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Abstract
Most significant contributions to the Representation Theory of Lie algebras by the 
members of the research group of IME-USP and their collaborators are described. 
The focus is made on the Gelfand-Tsetlin theories, representations of affine Kac-
Moody algebras, related vertex algebras and Lie algebras of vector fields.
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1  Introduction

Representation theory of Lie algebras is an active mainstream branch of Mathemat-
ics which plays an increasingly important role in different areas of modern science. 
In particular, representations of Lie algebras are of fundamental use in geometry, 
mathematical physics, topology, combinatorics, number theory, knot theory etc. This 
theory was a focus of the research group “Non-associative algebras, their represen-
tations, identities and relations” of IME-USP for more than 20 years. The ultimate 
goal is to develop a general framework and new methodologies to address challeng-
ing classification and structure problems using algebraic, geometric and combinato-
rics techniques. We will describe the most notable results obtained by the members 
of the research group on the representations of Lie algebras. Another paper of this 
volume will focus onstructure results of non-associative algebras.

First we consider Gelfand-Tsetlin theory for finite-dimensional Lie algebras and 
related structures which have attracted a considerable interest in the last 40 years 
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after the pioneering work of I.Gelfand and M.Tsetlin [63]. It can be viewed in a 
more general context of Harish-Chandra categories [28], which play an important 
role in the representation theory. The classification of simple objects in these cat-
egories is of prime importance.

As an attempt to unify the representation theories of the universal enveloping 
algebra of the full linear Lie algebra ��n and of the generalized Weyl algebras, a 
concept of Galois orders was introduced in [52]. The idea grows out of the classi-
cal concept of a Gelfand-Tsetlin basis for finite-dimensional representations of sim-
ple Lie algebras. This provided a new framework for the study of representation of 
various classes of algebras. Next we will focus on representation theory of infinite-
dimensional Lie algebras. We start with affine Kac-Moody algebras, which is one of 
the most active and fascinating branches in the theory of Lie algebras. These alge-
bras and related structures of vertex algebras, Yangians etc. serve as a motivation for 
mathematical models in quantum field theory and give rise to fundamentally new 
phenomena. Two closely related mathematical models for the states of elementary 
particles or strings are called Verma modules and Fock spaces (also called free field 
realizations). This motivated the theory of vertex algebras and construction of dif-
ferent free field realizations of the affine Kac-Moody algebra and related structures. 
There is a growing interest in the study of non-highest weight representations of 
affine Lie algebras with an expectation of their importance for non-rational affine 
vertex algebras. In particular, relaxed Verma modules have connections to the rep-
resentation theory of conformal vertex algebras and conformal field theories, e.g. 
N = 2 conformal field theory [32] and N = 4 conformal field theory [1]. The study 
of positive energy representations of simple affine vertex algebras can be reduced to 
the representations of corresponding finite-dimensional Lie algebras using the Zhu’s 
functor which allows to construct new families of simple modules for vertex alge-
bras [94].

One of the main reasons that the theory of affine Kac-Moody algebras has become 
such a popular area of research is that they (untwisted ones) have a realization given 
by the one dimensional central extension of the loop algebra, �⊗ ℂ[t, t−1] , where 
� is a simple finite-dimensional Lie algera. Replacing ℂ[t, t−1] by any commutative 
associative algebra R we obtain a new infinite-dimensional Lie algebra. In particu-
lar, a class of Krichever-Novikov Lie algebras corresponds to the case when R is 
an algebra of meromorphic functions on a Riemann surface with finite number of 
poles. The case of Laurent polynomials corresponds to the Riemann sphere ℂ ∪∞ 
with poles allowed only in {0,∞} . For the theory of Krichever-Novikov Lie algebras 
we refer to [86]. If instead of the sphere with two punctures we consider any com-
plex algebraic curve of genus 0 with a fixed set of n distinct points where the poles 
are allowed, then we obtain n-point affine Lie algebras. We obtain a class of elliptic 
Lie algebras if genus is 1 and superelliptic Lie algebras if genus is greater than 1.

Integrable systems arising from the Landau-Lifshitz differential equation [27] are 
described by the action on the space of solutions of certain infinite-dimensional Lie 
algebra, called the DJKM algebra, which is an example of a n-point Lie algebra. The 
universal central extension of the DJKM algebra can be described in terms of cer-
tain families of polynomials. It led to the discovery of a new family of non-classical 
orthogonal polynomials satisfying the fourth order differential equation [26]. Other 



133

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:131–156	

families of polynomials that appear in the description of the central extension are 
examples of the associated Jacobi polynomials of Ismail-Wimp.

Finally, we will discuss recent advances in the representation theory of Lie 
algebras of vector fields on affine varieties, whose history goes back to Sophus 
Lie. They are defined as derivation algebras of the ring of polynomial functions 
on an irreducible affine variety over an algebraically closed field of characteristic 
0. These algebras is a source of examples of simple infinite-dimensional Lie alge-
bras which are connected with the symmetries of geometric structures and with 
the symmetries of systems with infinitely many degrees of freedom.

The following members of the research group made a contribution to the theory 
and related topics: A.Bianchi (USP and Unesp) A.Bueno (USP and UFMG), T.Bunke 
(USP), M.Cardoso (USP), C.Duque (USP), V.Futorny (USP), D.Grantcharov (Uni-
versity of Texas), C.Gomes (USP and UFRN), A.Grishkov (USP), M.Guerrini 
(USP), J.Hartwig (USP and Iowa State University), K.Iusenko (USP), I.Kashuba 
(USP), L.Krizka (USP), R.Martins (USP and UNESP), G.Monsalve (USP and 
UFAM), O.Morales (USP), W.Mutis (USP and University of Nariño), A.Oliveira 
(USP), E.Ramirez (USP and UFABC), H.Rocha (USP), F. dos Santos (USP), 
A.Sargeant (USP and UFOP), J.Schwarz (USP), E.Vishnyakova (USP and UFMG), 
B.Wilson (USP), E.Wilson (USP), A.Zaidan (USP) P.Zadunaisky (USP and Univer-
sity of Buenos Aires), J.Zhang (USP and Central China Normal University).

The research group benefited greatly from the collaboration with T.Arakawa 
(Kyoto University), V.Bavula (Sheffield University), V.Bekkert (UFMG), G.Benkart 
(UW Madison), , Y.Billig (Carleton), W.Bock (TU Kaiserslautern), P.Bressler 
(Universidad de los Andes), L.Calixto (UFMG), B.Cox (College of Charleston), 
A.Davydov (Ohio University), I.Dimitrov (Queen’s University), Y.Drozd (Acad-
emy of Sciences, Ukraine), F.Eshmatov (Tashkent University), K.Iohara (Uni-
versity of Lyon), D.Koshloukova (Unicamp), F.Marko (Penn State University), 
O.Mathieu (University of Lyon), V.Mazorchuk (University of Uppsala), K.Misra 
(NCSU), A.Molev (University of Sydney), M.Neklyudov (UFAM), J.Nilsson (Chal-
mers University), S.Ovsienko (Kyiv University), I.Penkov (Jacobs University), 
A.Premet (University of Manchester), E.Rao (Tata Institute), L.Rigal (Université 
Sorbonne Paris Nord), M.Rosso (University of Paris), M.Saorin (University of Mur-
cia), V.Serganova (UC Berkeley), V.Sergeichuk (Academy of Sciences, Ukraine), 
A.Shindyapin (Eduardo Mondlane University), S.Sidki (UnB), A.Solotar (Univer-
sity of Buenos Aires), P.Somberg (Charles University), K.Zhao (Wilfrid Laurier 
University), A.Zubkov (Sobolev Institute of Mathematics, Omsk Branch).

This paper is a tribute to the memory of my friends and colleagues Ben Cox, 
Sergiy Ovsienko and Vladimir Sergeichuk.

2 � Gelfand‑Tsetlin theories

The field � is assumed to be algebraically closed of characteristic 0. All rings are 
assumed to be �-algebras.
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2.1 � Harish‑Chandra modules

Let U be an associative algebra over the field � , Γ ⊂ U a noetherian commutative sub-
algebra, SpecmΓ the set of maximal ideals of Γ . Following [28] we say that M is a 
Harish-Chandra module (with respect to Γ ) if M is a finitely generated U-module such 
that

where

The support of a Harish-Chandra module M is a subset of SpecmΓ consisting of 
those � for which M(�) ≠ 0.

We denote by ℍ(U,Γ) the category of all Harish-Chandra U-modules. Gelfand-Tset-
lin theories study the categories ℍ(U,Γ) with maximal commutative Γ.

We will assume that Γ is a Harish-Chandra subalgebra of U [28]: for any u ∈ U 
theΓ-bimodule ΓuΓ is finitely generated both as a left and as a right Γ-module. This 
notion proved to be very powerful in the study of Harish-Chandra modules. Note that 
M ∈ ℍ(U,Γ) if and only if every finitely generated Γ-submodule of M has finite length. 
For other equivalent conditions see [54].

For a subset D ⊂ SpecmΓ denote by ℍ(U,Γ,D) the full subcategory in ℍ(U,Γ) con-
sisting of modules whose support is a subset of D. For an element u ∈ U set

Denote by Δ the minimal equivalence on SpecmΓ containing sets Xu for all u ∈ U 
and set Δ(U,Γ) to be the set of Δ−equivalence classes on SpecmΓ.

We have

Let Γ� = lim
←k Γ∕�

k be the completion of Γ with respect to a maximal ideal � . 
The following category AU,Γ was introduced in [28], see also [54] for more details. 
The set of objects ObAU,Γ consists of maximal ideals of Γ while the space of mor-
phisms AU,Γ(�, �) is defined as

The category AU,Γ splits into the sum of full subcategories,

M =
⨁

�∈SpecmΓ

M(�),

M(�) = {x ∈ M |∃k, �kx = 0}.

X
u
= {(�,�) ∈ SpecmΓ × SpecmΓ |Γ∕� is a subquotient of (ΓuΓ)∕(Γu�)}.

ℍ(U,Γ) =
⨁

D∈Δ(U,Γ)

ℍ(U,Γ,D).

(1)
AU,Γ(�, �) = lim

←n,m
U∕(�nU + U�m) =

= lim
←n,m

Γ∕�n ⊗Γ U ⊗Γ Γ∕�
m.

AU,Γ =
⨁

D∈Δ(U,Γ)

AU,Γ(D),
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where AU,Γ(D) denotes the restriction of AU,Γ on D.
The category AU,Γ is endowed with the topology of the inverse limit and the 

category of �-vector spaces ( � − mod ) with the discrete topology. Consider 
the category AU,Γ − mod d of discrete modules (that is, continuous functors) 
M ∶ AU,Γ⟶� − mod.

Proposition 2.1  ([ [28],  Theorem  17]) Categories AU,Γ − mod d and ℍ(U,Γ) are 
equivalent.

To study simple modules in the category ℍ(U,Γ) one may try to parametrize 
them by simple Γ-modules, or equivalently by maximal ideals of Γ . The restric-
tion functor from the category ℍ(U,Γ) to the category of torsion Γ-modules 
induces a map Φ from SpecmΓ to the set of isomorphism classes Irr(U) of sim-
ple U-modules in ℍ(U,Γ) . Given a maximal ideal � ∈ SpecmΓ , Φ(�) consist of 
those simple V ∈ ℍ(U,Γ) such that V(�) ≠ 0 (or left maximal ideals of U which 
contain �).

In the case when both U and Γ are commutative and Γ ⊂ U is an integral 
extension then any prime ideal of Γ lifts to a prime ideal of U. Moreover, if U is 
finitely generated module over Γ then number of liftings is finite for every prime 
ideal of Γ . This is reflected in the Hilbert-Noether theorem when U is the sym-
metric algebra of a finite-dimensional vector space V and Γ is the subalgebra of 
G-invariants of U for a finite subgroup G of GL(V).

The non-emptiness of the fibers of Φ is related to the freeness of U over Γ 
as a right module. A remarkable result of Kostant [74] shows that the universal 
enveloping algebra U of a reductive Lie algebra is free over the center Γ of U. 
Any central character of Γ defines a block of ℍ(U,Γ) of modules with such cen-
tral character, and each block contains infinitely many simple objects.

Ovsienko [82] introduced a technique to study the freeness of universal envel-
oping algebras of Lie algebras over polynomial subalgebras. A graded version 
of this technique was developed in [51] which allows to apply this technique to 
a large class of special filtered associative algebras. An associative algebra U 
endowed with an increasing filtration is special if any element can be written 
uniquely as a linear combination of ordered monomials in some fixed generators 
of U and if the associated graded algebra is polynomial. We have

Theorem  2.1  ( [51]) Let U be a special filtered �-algebra. Let g1 , … , gt ∈ U be 
mutually commuting elements whose graded images form a complete intersection for 
the associated graded algebra of U. Then U is a free left (right) �[g1,… , gt]-module.

This result was used to show the freeness of the restricted Yangian of ��n over 
its center [51] and the freeness of the restricted Yangian of ��2 over its Gelfand-
Tsetlin subalgebra. The problem of the freeness is related to the equidimension-
ality of certain Gelfand-Tsetlin varieties. In the case of restricted Yangian of ��n 
this variety was studies in [5], see also [6].



136	 São Paulo Journal of Mathematical Sciences (2022) 16:131–156

1 3

2.2 � Galois algebras

Theory of Galois rings (orders) was developed in [52] to deal with the problem of 
the finiteness of the fibers Φ(�) of maximal ideals of commutative subalgebras.

Let R be a ring, M a monoid acting on R by ring automorphisms and R ∗ M is 
the skew monoid ring.

Let Γ be an integral domain, K the field of fractions of Γ and L a finite Galois 
extension of K with the Galois group G = Gal(L∕K) . Consider the action of G by 
conjugation on Aut (L) . Let M be any G-invariant submonoid of Aut (L) . We assume 
the following property of M : if m1,m2 ∈ M and m1|K = m2|K then m1 = m2 . 
Denote by K = (L ∗ M)G the subring of invariants.

Definition 2.1  A finitely generated Γ-subring U of K is called a Galois ring over Γ if 
UK = KU = K.

We assume that all Galois rings are �-algebras. In this case we say that a Galois 
ring is a Galois algebra over Γ.

Example 2.1  Let U = Γ(�, a) be a generalized Weyl algebra of rank 1 ( [3]), where Γ 
is a unital integral domain, a ∈ Γ , � an automorphism of Γ of infinite order. It is gen-
erated over Γ by X and Y such that X� = �(�)X, Y� = �−1(�)Y , YX = a, XY = �(a). 
Let K be the field of fractions of Γ and M ≃ ℤ is a subgroup of Aut Γ generated by 
� . Then U can be embedded into the skew group algebra K ∗ ℤ when X ↦ � and 
Y ↦ a�−1 . Clearly, U is a Galois algebra over Γ . Note that U ≃ Γ ∗ ℤ if a is invert-
ible in Γ.

A Galois ring U over Γ is right (respectively left) Galois order [52], if for any 
finite-dimensional right (respectively left) K-subspace W ⊂ U[S−1] (respectively 
W ⊂ [S−1]U ), W ∩ U is a finitely generated right (respectively left) Γ-module. A 
Galois ring is Galois order if it is both right and left Galois order.

This is a natural non-commutative generalization of the classical concept of order 
in skew group rings. If Γ is finitely generated and U is a Galois order over Γ then Γ 
is a Harish-Chandra subalgebra of U. Moreover, if M is a group then Γ is a maximal 
commutative subalgebra of U.

Examples of Galois orders include the generalized Weyl algebras over integral 
domains with infinite order automorphisms (e.g. the Weyl algebras, quantized 
Weyl algebras, the quantum plane, the q-deformed Heisenberg algebra, the Witten-
Woronowicz algebra) [59], the universal enveloping algebra of ��n over the Gelfand-
Tsetlin subalgebra [28], finite W-algebras [49] among the others. We also have

Theorem 2.2  ( [52], Theorem 5.2, (2)) If a Galois ring U over a noetherian domain 
Γ is projective as a right (left) Γ-module then U is a right (left) Galois order.

Further examples of Galois orders were recently constructed in [65]. Set 
K = (L ∗ M)G and
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Then KΓ is a Galois order over Γ in K [65, Theorem 2.21]. Principal Galois orders 
are Galois subrings of KΓ . This includes orthogonal Gelfand-Tsetlin algebras [65, 
Theorem  4.6], quantum orthogonal Gelfand-Tsetlin algebras [65, Theorem  5.6], 
Coulomb branches [91] and rational Galois orders. Rational Galois orders are 
attached to an arbitrary finite reflection group and a set of difference operators with 
rational function coefficients. The parabolic subalgebras of finite W-algebras of type 
A are examples of rational Galois orders [65, Theorem 1.2].

New examples of Galois orders can be obtained by considering the invariants of 
generalized Weyl algebras under the linear actions of finite groups [58–60]. Let Gm 
be the cyclic group of order m. Fix a primitive mth root of unity w. Then Gm acts on 
the Weyl algebra A1 as follows: � → w�; x → w−1x , where x and � are the standard 
generators of A1 , [�, x] = 1 . Denote by AGm

1
 the subalgebra of invariants under this 

action. Similarly, one defines the invariant subalgebra AG⊗n
m

n  of the nth Weyl algebra. 
For m ≥ 1, n ≥ 1, p|m let A(m, p, n) be the subgroup of G⊗n

m
 of all elements (h1,… , hn) 

such that (h1h2 … hn)
m∕p = id . The groups G(m, p, n) = A(m, p, n)⋊ Sn , where the 

symmetric group Sn permutes the entries in A(m, p, n), are non-exceptional complex 
reflection groups. Let An be the alternating subgroup of Sn . We have

Theorem 2.3  ( [59], Theorem 1) Let W ∈ {G⊗n
m
, G(m, 1, n),An , m ≥ 1 , n ≥ 1} . Then 

AW
n

 is a principal Galois order over Γ = �[t1,… , tn]
W , where ti = �ixi, i = i,… , n.

Analogs of Theorem 2.3 also hold for invariants of differential operators on the torus 
[59, Theorem 3].

It was shown in [53] that Galois orders have a nice theory of Harish-Chandra mod-
ules. Let U ⊂ (L ∗ M)G be a Galois ring over Γ and � a maximal ideal of Γ . Let �̄ be 
any lifting of � to the integral closure of Γ in L. The cardinality |�| of the stabilizer of 
�̄ in M depends only on �.

Theorem 2.4  ( [53], Theorem A, , Theorem 8) Let Γ be a finitely generated commu-
tative domain, U ⊂ (L ∗ M)G a right Galois order over Γ , � ∈ SpecmΓ with finite 
|�| . 

	 (i)	 The fiber Φ(�) is non-empty. Moreover, If U is a Galois order over Γ , then 
the fiber Φ(m) is finite.

	 (ii)	 Let U be a Galois order over Γ , where Γ is a normal noetherian �-algebra, and 
M ∈ ℍ(U,Γ) is simple U-module. Then all subspaces M(�) and the number of 
isomorphism classes of simple modules N, such that N(�) ≠ 0 , are bounded.

KΓ = {x ∈ K ∣ x(�) ∈ Γ for all � ∈ Γ}.
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2.3 � Gelfand‑Tsetlin ��
n
‑modules

In this subsection we assume 𝕜 = ℂ and consider Gelfand-Tsetlin representations 
for the Lie algebra ��n consisting of all n × n complex matrices with the standard 
basis of elementary matrices ei,j , 1 ≤ i, j ≤ n . For each k ⩽ n denote by ��k the Lie 
subalgebra of ��n spanned by {eij | i, j = 1,… , k} . We have the following embed-
dings of Lie subalgebras

We have corresponding embeddings U1 ⊂ U2 ⊂ … ⊂ Un of the universal enveloping 
algebras Uk = U(��k) , 1 ≤ k ≤ n . Set U = Un.

Let Zk be the center of Uk . This is the polynomial algebra generated by the fol-
lowing elements:

s = 1,… , k.
Let Γ be the Gelfand-Tsetlin subalgebra of U(��n) generated by the centers Zk , 

k = 1,… , n . The generators cks , k = 1,… , n , s = 1,… , k are algebraically inde-
pendent [93].

Let Λ be the polynomial algebra in the variables {�ij | 1 ⩽ j ⩽ i ⩽ n} . Consider 
the embedding � ∶ Γ⟶ Λ such that

One can easily check that �(cks) is a symmetric polynomial in Λ of degree s in vari-
ables �k1,… , �kk . Let G =

∏n

i=1
Si be the product of symmetric groups. Then G acts 

naturally on Λ where Sk permutes the variables �k1,… , �kk , k = 1,… , n . The image 
of Γ , �(Γ) , coincides with the subalgebra of G-invariant polynomials in Λ which we 
identify with Γ.

Consider the Harish-Chandra category H(U,Γ) . The modules of H(U,Γ) are 
called Gelfand-Tsetlin modules. If M ∈ H(U,Γ) then

where M(�) = {v ∈ M|�kv = 0 for some k ≥ 0}.

For a Gelfand-Tsetlin module M(�) ∈ H(U,Γ) and � ∈ SpecmΓ we call the 
dimension of M(�) the Gelfand-Tsetlin multiplicity of �.

A classical result of Gelfand and Tsetlin [63] provides an explicit basis for 
all simple finite-dimensional ��n-modules. This basis is given by special Gelfand-
Tsetlin tableaux. Identify ℂ

n(n+1)

2  with Tn(ℂ) = ℂn × ℂn−1 ×… × ℂ and write every 
vector v ∈ ℂ

n(n+1)

2  in the following form:

��1 ⊂ ��2 ⊂ … ⊂ ��n.

(2)cks =
∑

(i1,…,is)∈{1,…,k}s

ei1i2ei2i3 … eisi1 ,

cks ↦

k∑

i=1

(�ki + k − 1)s
∏

j≠i

(

1 −
1

�ki − �kj

)

.

M =
⨁

�∈SpecmΓ

M(�),
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Then we define the following Gelfand-Tsetlin tableau T(v):

For v = (vij)
n
j≤i=1 ∈ Tn(ℂ) consider the complex vector space V(T(v)) spanned by the 

set

A Gelfand-Tsetlin tableau T(v) is standard if vki − vk−1,i ∈ ℤ≥0 and 
vk−1,i − vk,i+1 ∈ ℤ>0 for all 1 ≤ i ≤ k ≤ n − 1.

If L(�) is the simple finite-dimensional ��n-module of highest weight 
� = (�1,… , �n) , then the set of all standard tableaux T(v) with fixed top row 
vni = �i − i + 1 , i = 1,… , n gives a Gelfand-Tsetlin basis of L(�) . Moreover, one can 
explicitly write the action of of the generators of ��(n) on these basis tableaux [63].

To every tableau T(v) we associate the maximal ideal �v of Γ generated by 
cij − �ij(v) , where

Let M = ℤ
n(n−1)

2  be the free abelian group generated by �ij , 1 ⩽ j ⩽ i ⩽ n − 1 , 
where (�ij)ij = 1 and all other (�ij)k� are zero, 1 ≤ j ≤ i ≤ n − 1 and let 
G = Sn × Sn−1 ×⋯ × S1 . Identify M with Tn−1(ℤ) and consider its action on Tn(ℂ) 
by translations: �ij ⋅ v = �ij + v . Also, consider the action of G on Tn(ℂ) , where Sk 
acts on the kth row:

Let L be the field of fractions of Λ and K the field of fractions of Γ . Then K = LG 
and G is the Galois group of the field extension K ⊂ L . The following map 
� ∶ U → (L ∗ M)G is a homomorphism of algebras, where

v = (vn1, ..., vnn|vn−1,1, ..., vn−1,n−1|⋯ |v21, v22|v11).

v + Tn−1(ℤ) = {v + w | w = (wij)
n
j≤i=1,wij ∈ ℤ,wnk = 0 , k = 1,… , n}.

�mk(v) ∶=

m∑

i=1

(vmi + m − 1)k
∏

j≠i

(

1 −
1

vmi − vmj

)

.

�(vk1,… , vkk) ∶= (vk,�−1(1),… , vk,�−1(k)).
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and e is the unit of M.
This embedding defines on U the structure of a Galois order over Γ [52, Proposi-

tion 7.2].
Homomorphism � can also be used to construct infinite-dimensional Gelfand-

Tsetlin modules which have a basis parametrized by Gelfand-Tsetlin tableaux and 
with the action of Γ determined by the entries of tableaux as in (2.3). Such Gelfand-
Tsetlin modules are called tableau modules.

If the action of the generators of ��n in a tableau Gelfand-Tsetlin module is given 
by the classical Gelfand-Tsetlin formulas as in finite-dimensional modules then such 
module is called standard tableau module. Families of standard tableau modules 
were studied in [28, 37, 56, 62, 77, 78].

In particular, if v is generic, that is vrs − vrt ∉ ℤ for any r < n and all possible 
s ≠ t , then V(T(v)) is generic standard tableau module [37]. All simple generic Gel-
fand-Tsetlin modules were described in [37].

If v contains a pair (vkij , vkis ) such that k > 1 and vkij − vkis ∈ ℤ , then v (and T(v)) 
is singular. Finite-dimensional ��n-modules are examples of tableau Gelfand-Tsetlin 
modules with singular tableaux. Families of infinite-dimensional tableau Gelfand-
Tsetlin modules with singular tableaux were considered in [38, 40, 56, 62, 77, 78]. 
In particular, the problem of constructing singular standard tableau Gelfand-Tsetlin 
modules was solved in [56, Theorem II] for any tableau T(w) satisfying special FRZ-
condition. This includes all known examples of standard tableau modules. For any 
such tableau T(w) there exists a unique simple standard tableau Gelfand-Tsetlin ��n
-module Vw such that Vw(�w) ≠ 0 and all Gelfand-Tsetlin multiplicities of maximal 
ideals of Γ in the support of Vw equal 1. A combinatorial approach developed in [56] 
allows to explicitly construct a large class of simple tableau modules with singular 
tableaux. Moreover, it was shown for n ≤ 4 (and conjectured for all n) that modules 
constructed in [56] exhaust all simple standard tableau Gelfand-Tsetlin modules.

A systematic study of singular modules was initiated in [37]. We say that v is sin-
gular of index m ≥ 2 if: 

	 (i)	 there exists a row k, 1 < k < n , and m entries vki1 ,… , vkim on this row such that 
vkij − vkis ∈ ℤ for all j, s ∈ {1,… ,m};

	 (ii)	 m is maximal with the property (i).

A tableau Gelfand-Tsetlin module structure on V(T(v)) for singular v of index m = 1 
was established in [ [37],  Theorem  4.11]. In this case the module V(T(v)) is not 
standard tableau module, its basis contains derivative tableaux and the Gelfand-Tset-
lin multiplicities are bounded by 2 (see also [88] and [92]). The structure of V(T(v)) 
was described in [64]. The case of arbitrary singularity of index m = 2 was studied 

�(emm) = emm ∗ e, �(emm+1) =

m�

i=1

a+
mi
�mi, �(em+1m) =

m�

i=1

a−
mi
(�mi)−1,

a±
mi

= ∓

∏
j(�m±1,j − �mi)

∏
j≠i(�mj − �mi)

,
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in [39], where any number of singular pairs (but not singular triples) and multiple 
singular pairs in the same row were allowed. The case of an arbitrary singularity was 
solved in [89] (p-singularity) and [83] (arbitrary singularity). Finally, an alternative 
geometric approach developed in [90] led to the classification of simple Gelfand-
Tsetlin modules. It showed a deep connection between the Gelfand-Tsetlin theory 
and Coulomb branches.

Remark 2.1 

•	 Singular tableau Gelfand-Tsetlin modules have beautiful connections with Schu-
bert calculus and Postnikov polynomials [41] and with tensor product categorifi-
cation and KLRW algebras [75];

•	 It is still a conjecture that any simple Gelfand-Tsetlin module V with V(�v) ≠ 0 
is isomorphic to a subquotient of V(T(v)) for any singular v. It is known to be true 
for n = 2 and n = 3 , and in the 1-singular case. In particular, there is a complete 
explicit classification of all simple Gelfand-Tsetlin ��

3

-modules [36].

Denote �� the category of all Gelfand-Tsetlin ��3-modules, and for each orbit � in 
ℂ

n(n+1)

2  of the action of Tn−1(ℤ)#G denote by ��� the full subcategory of �� consist-
ing of modules with support in � . Then

Given v ∈ ℂ
n(n+1)

2  define the graph Ω(v) whose vertices are pairs of indices 
{(k, i) ∣ 1 ≤ i ≤ k ≤ n} , and there is an edge between (k,  i) and (l,  j) if and only if 
vk,i − vl,j ∈ ℤ and |k − l| ≤ 1 . We will say that v ∈ ℂ

n(n+1)

2  is in  normal form if 
whenever vk,a − vk,b ∈ ℤ for some a ≤ b ≤ k ≤ n , then vk,i − vk,j ∈ ℤ≥0 for all 
a ≤ i < j ≤ b . We will say that v ∈ ℂ

n(n+1)

2  is a seed if v is in a normal form and for 
(k, i) and (l, j) from the same connected component of Ω(v) the following holds: if 
k, l < n then vk,i = vl,j , while if l = n then vk,i ≤ vn,j . To explain these concepts we 
consider an example below of an element v ∈ ℂ

n(n+1)

2  , a normal form of v, a seed 
and the corresponding graph. It is assumed that the set {1, a, b, c,…} ⊂ ℂ is linearly 
independent over ℤ.

�� =
⨁

�∈ℂ
n(n+1)

2 ∕(Tn−1(ℤ)#G)

��� .
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Fix a seed v and set � = �v ∈ ℂ
n(n+1)

2 ∕(Tn−1(ℤ)#G) . Let Gv < G be the stabilizer 
of v . For z ∈ Tn−1(ℤ) such that v + z is in normal form set (Gv)z < Gv to be the 
stabilizer of z. If M ∈ GT� then

The following FO inequality was established in [53, Theorem 4.12(c)]. It gives an 
upper bound for the Gelfand-Tsetlin multiplicities of any simple Gelfand-Tsetlin 
module:

It was conjectured in [53, Remark 5.4] that this inequality is sharp. This was shown 
to be true in [41, Theorems 8.3, 8.5] and in [29, Theorems 10,11].

We call the essential support of M the set of all z for which the equality holds 
in (3). In fact, (3) gives a sharp bound in each subcategory ���:

Theorem  2.5  (Strong Futorny-Ovsienko Conjecture) [42] Let v be a seed, � = �v . 
Then 

	 (i)	 The module V(T(v)) has a simple socle Vsoc;
	 (ii)	 The essential support of Vsoc is nonempty. It consists of integral points of a 

finite union of polyhedral rational cones, at least one of which is of maximal 
possible rank n(n−1)

2
;

	 (iii)	 The maximal Gelfand-Tsetlin multiplicity of a character in ��� is |Gv| , and 
this is attained at the socle Vsoc;

M = ⊕z∈Tn−1(ℤ)
M(�v+z)

(3)dimM(�v+z) ≤ |Gv|

|(Gv)z|
.
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	 (iv)	 For any v + z in the essential support of Vsoc , the module Vsoc is the unique 
simple Gelfand-Tsetlin module having v + z in its support.

2.4 � Representations of W‑algebras

Finite W-algebras are certain family of algebras that are associated with nilpo-
tent orbits in semisimple Lie algebras. These algebras are closely connected 
with Yangian theory and with affine W-algebras and attract a growing interest in 
their representation theory. Let � = (p1,… , pm) be a sequence of integers such 
that 1 ≤ p1 ≤ … ≤ pm and p1 +…+ pm = n . Then � defines a finite W-algebra 
U = W(�) of type � . Set �k = (p1,… , pk) , k = 1,… ,m and consider the corre-
sponding finite W-algebras W(�k) . Then 

Let Γ be a subalgebra of W(�) generated by the centers of all W(�k) , k = 1,… ,m . 
The center Z of W(�) is polynomial algebra in e = p1 +…+ pm variables, while 
Γ is a polynomial algebra in d = mp1 + (m − 1)p2 + ... + 2pm−1 + pm variables 
which is usually called the Gelfand-Tsetlin subalgebra of W(�) . If m = e and 
p1 = … = pm = 1 then W(�) is isomorphic to the universal enveloping algebra 
U(��n).

Theorem 2.6  [49, Theorem 3.6] W(�) is a Galois order over Γ.

Theorem 2.6 implies that W(�) has a nice theory of Harish-Chandra modules in 
ℍ(W(�),Γ) (see also [48]). Moreover, it allows to prove the Gelfand-Kirillov conjec-
ture for W(�) [49, Theorem I]. An important ingredient of the proof is the Noncom-
mutative Noether’s problem on the invariants in the skew fields of the Weyl algebras 
with respect to linear group actions. We have the following remarkable fact

Theorem 2.7  [60] For any field � of zero characteristic and any linear action of a 
finite group G, if the quotient variety �n(�)∕G is rational then the Noncommutative 
Noether’s problem holds.

A large family of new simple modules for an arbitrary finite W-algebra of type 
A was explicitly constructed in [57]. A basis of these relation modules is given by 
the Gelfand-Tsetlin tableaux whose entries satisfy certain sets of relations. Also, the 
simplicity of tensor product of any number of highest weight modules with generic 
highest weight was established.

2.5 � Generalized Gelfand‑Tsetlin theories

Let Γ be a commutative noetherian Harish-Chandra subalgebra of an associative 
algebra U and assume U to be finitely generated over Γ . Then Γ has the maximal tor-
sion (that is all generators of Γ have torsion) on Harish-Chandra modules in ℍ(U,Γ) . 

W(𝜋1) ⊂ … ⊂ W(𝜋m) = W(𝜋).
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Thus ℍ(U,Γ) serves as a starting point in the stratification of the whole module cat-
egory U − Mod by prime ideals of Γ [54, 55]. The subcategories of this stratifica-
tion are the generalized Harish-Chandra categories consisting of U-modules with 
smaller torsion.

Recall that a torsion theory over Γ is a pair (T,F) of full subcategories of 
Γ − mod such that: 

(1)	 T  consists of all Γ-modules T such that Hom Γ(T ,F) = 0 , for all F ∈ F ,
(2)	 F  consists of all Γ-modules F for which Hom Γ(T ,F) = 0 , for all T ∈ T

Define a transfinite ascending chain of subsets (Zi)i ordinal by setting Z0 = SpecmΓ 
and Zi =

⋃
j<i Zj , in case i is a limit ordinal, and Zi = Zi−1 ∪ Max ( Spec Γ ⧵ Zi−1) in 

case i is nonlimit. Here MaxA denotes the set of maximal elements of A. Then for 
each � ∈ Spec Γ there is a minimal ordinal i� such that � ∈ Zi� . The nonlimit ordinal 
i� is the coheight cht(�) of �.

We have a transfinite ascending chain of torsion classes T0 ⊆ T1 ⊆ … ⊆ Ti ⊆ … 
such that Γ − Mod =

⋃
i≤� Ti for some ordinal � . If M is a Γ-module then for 

uniquely determined ordinal i we have M ∈ Ti and M ∉ Tj , for all j < i.
For a torsion class T  in Γ − Mod and for a U-module M denote the torsion Γ

-submodule of M in T  by T(M). If T(M) is a U-submodule of M for every U-module 
M then we say that a torsion theory (T,F) in Γ − Mod is liftable to U − Mod.

The following result shows that the module category U − Mod has a stratification 
with respect to the coheight of prime ideals.

Theorem  2.8  [55, Theorem A] Let i ≥ 0 be an integer. The torsion theory associ-
ated to the subset Zi ⊂ Spec Γ of prime ideals of coheight ≤ i is liftable to U. For 
any simple U-module M all associated prime ideals of M in Spec Γ have the same 
coheight.

3 � Representations of infinite‑dimensional Lie algebras

3.1 � Affine Lie algebras

In 1967 V.Kac and R.Moody extended the generators and relations construction 
of finite-dimensional simple Lie algebras to a new important class of infinite-
dimensional Lie algebras, now appropriately called Kac-Moody algebras, by 
relaxing the condition on the Cartan matrix to be positive definite [68]. Repre-
sentation theory of these algebras is a rich source of interesting research with 
numerous applications. Specially important is the family of affine Kac-Moody 
algebras which correspond to the case of positive semidefinite generalized Cartan 
matrix. Their representations are relevant to theory of theta functions, modular 
forms, vertex algebras, the Boson-Fermion correspondence and soliton equations, 
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to name just a few. Description of simple modules for affine Kac-Moody algebras 
is a very challenging problem of prime importance.

Let � be an affine Kac-Moody algebra with a 1-dimensional center Z = ℂc and 
a fixed Cartan subalgebra ℌ.

Classification of simple �-modules is known in various subcategories of 
weight modules, i.e. those on which the subalgebra ℌ acts diagonally [19, 33–35, 
66, 4, 61] but remains open in general. A key ingredient in the construction of 
simple module for affine Lie algebras is a parabolic induction. The long standing 
conjecture [34], Conjecture 8.1 states that parabolic induction reduces the classi-
fication of simple modules to the classification of so-called dense modules (with 
maximal possible support). This conjecture was proved for A(1)

1
 [33], for A(2)

2
 , 

[18] and for all affine Lie algebras in the case of modules with finite-dimensional 
weight spaces and non-zero action of c [61].

Parabolic subalgebras of affine Lie algebras are of two types: those with a 
finite-dimensional Levi subalgebra and those with an infinite-dimensional one. 
Let � ⊂ � be a parabolic subalgebra such that � = �⊕ � is a Levi decomposi-
tion with an infinite-dimensional Levi factor � . Then � contains the Heisenberg 
subalgebra G of � generated by all imaginary root subspaces of � . Let �0 be the 
Lie subalgebra of � generated by all real root subspaces and ℌ , G(�) a subalgebra 
of �0 generated by its imaginary root subspaces. Then � = �0 + G� , where G� ⊂ G 
is the orthogonal complement of G(�) in G with respect to the Killing form, that 
is G = G(�) + G� , [G�, �

0] = 0 and �0 ∩ G� = ℂc . For any positive integer k, denote 
�k the Lie subalgebra of � generated by the root subspaces �±k� . We say that a �k

-module V is �k�-surjective (respectively �−k�-surjective) if for any two elements 
v1, v2 ∈ V  there exist v ∈ V  and u1, u2 ∈ U(�k�) (respectively, u1, u2 ∈ U(�−k�) ) 
such that vi = uiv , i = 1, 2 . A G�-module T is admissible if for any positive integer 
k, any its cyclic �k-submodule T ′ ⊂ T  is �k�-surjective or �−k�-surjective.

A simple weight �-module is called tensor if it is isomorphic to a tensor prod-
uct of a simple weight �0-module S with a ℤ-graded simple G�-module T with the 
same scalar action of c. A tensor module S⊗ T  is called admissible if T is admis-
sible G�-module.

If N is a weight �-module then consider the induced module

where �N = 0 . The following result allows to construct explicitly a large family of 
simple �-modules from simple �-modules. Particular cases of this theorem were 
proved in [4, 43].

Theorem 3.1  [44, Theorem 1] Let � = �⊕ � ⊂ � be a parabolic subalgebra of � 
with infinite-dimensional Levi factor � . Then indN(�,�) is a simple �-module for 
any simple admissible tensor �-module N with a non-zero scalar action of c.

Fock space realizations of affine Kac–Moody algebras were introduced in [90] 
for affine sl2 and were generalized in [31] for all untwisted affine Lie algebra. 

indN(�,�) = U(�)⊗U(�) N,
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These remarkable boson realizations, called Wakimoto modules, plays an impor-
tant role in the conformal field theory for the Wess-Zumino-Witten models.

Different free field realizations of affine Lie algebras were constructed in [7, 
20, 24, 70, 79, 80], yielding in particular explicit constructions of imaginary 
Verma modules and intermediate Wakimoto modules for affine sln . A uniform 
construction for an arbitrary untwisted affine Kac–Moody algebra which includes 
all cases above, was given in [47, Theorem 3.3]. It was motivated by geometric 
representation theory for generalized flag manifolds of finite-dimensional semi-
simple Lie groups.

Let � be a finite-dimensional simple Lie algebra, � an invariant symmetric bilin-
ear form on � , � = �⊕ � a parabolic subalgebra of � with the Levi factor � , �̄ is the 
opposite radical of � . Consider the affine Kac–Moody algebra ��𝜅 = �((t))⊕ ℂc with 
the commutation relations

Consider the natural parabolic subalgebra �nat of �̂

where

and the nilradical �nat of �nat and the opposite nilradical �̄nat are given by

We have the triangular decomposition of �̂:

Let � ∶ �nat → ��(V) be a representation of �nat such that �(c) = idV . Then the gen-
eralized imaginary Verma module of level k is the induced module

Consider the commutative ℂ-algebra K = ℂ((t)) , ΩK = ℂ((t)) dt . For a finite-dimen-
sional complex vector space V we define K(V) = V ⊗ℂ K and ΩK(V

∗) = V∗ ⊗ℂ ΩK . 
A natural pairing between ΩK(V

∗) and K(V) allows us to identify the restricted dual 
space of K(V) with ΩK(V

∗) . Set PolΩK(V
∗) for the polynomials on ΩK(V

∗).
The following theorem establishes an isomorphism between the geometric reali-

zation of the affine Lie algebra �̂ and the corresponding generalized imaginary 
Verma �̂-module

Theorem 3.2  [47, Theorem 3.15] Let (�,V) be a continuous �nat-module. Then we 
have an isomorphism of �̂-modules:

[a⊗ f (t), b⊗ g(t)] =

= [a, b]⊗ f (t)g(t) − 𝜅(a, b)Rest=0(f (t)dg(t))c.

�nat = �nat ⊕ �nat,

�nat = �⊗ℂ ℂ((t))⊕ ℂc

�nat = �⊗ℂ ℂ((t)) and �̄nat = �̄⊗ℂ ℂ((t)).

�� = �̄nat ⊕ �nat ⊕ �nat.

�𝜎,𝜅,�(V) = Ind
��
�nat
V = U(��)⊗U(�nat)

V .



147

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:131–156	

For a �-module E set

where �⊗ tℂ[[t]]E = 0 and c acts on E as the identity. Then we get a functor ��,� 
from the category of �-modules to the category of relaxed highest weight  �̂-mod-
ules. The module 𝕄�,�(ℂ) has a natural structure of a vertex algebra, called the uni-
versal affine vertex algebra associated with � , which we denote V�(�) . The simple 
affine vertex algebra V�(�) is the unique simple graded quotient of 𝕄�,�(ℂ) . There 
is a one-to-one correspondence between simple positive energy representations of 
V�(�) and simple admissible modules over the Zhu’s algebra A(V�(�)) of V�(�) [94], 
where

for some two-sided ideal I� of U(�) . We also have A(V�(�)) ≅ U(�) . This corre-
spondence allows to construct new families of simple representations of these ver-
tex algebras. In particular, new families of simple modules were constructed for the 
universal affine vertex algebra of ��n in [2]. This approach has also been exploited 
in [50, 72, 73] and [45]. In particular, the localization technique and the Wakimoto 
functors were used in [45] to construct relaxed Wakimoto modules for affine vertex 
algebras. The twisting functor T� on the category of �̂-modules is assigned to a posi-
tive root � of � and is defined as follows

for a �̂-module M, where D�U(�̂) is the localization of U(�̂) relative to the multiplca-
tive set {f k

𝛼
| k ∈ ℤ≥0} ⊂ U(��).

There exists a natural isomorphism

of functors, where T�
� is the twisting functor for � assigned to � . In particular, for a 

Verma �-module M(�) of � of highest weight � we have

where W(�, �) ∈ ℍ(U(�),Γ�) , where Γ� is commutative subalgebra generated by the 
Cartan subalgebra of � and by the Casimir element of root � . It was shown in [46] 
that W(�, �) has finite Γ�-multiplicities Moreover, it has finite Γ-multiplicities for 
any commutative subalgebra Γ of U(�) containing Γ�.

The Feigin-Frenkel homomorphism between the universal affine vertex alge-
bra and the tensor product of the Weyl vertex algebra with the Heisenberg ver-
tex algebra gives an explicit free field construction of Wakimoto modules. It was 
used in [45] to obtain a free field realization of relaxed Verma modules.

𝕄𝜎,𝜅,�(V) ≃ PolΩK(�̄
∗)⊗ℂV .

𝕄𝜅,�(E) = U(��)⊗U(�⊗ℂ[[t]]⊕ℂc) E,

A(V�(�)) ≅ U(�)∕I�

T𝛼(M) = (D𝛼U(��𝜅)∕U(��))⊗U(��)M,

T�◦��,� → ��,�◦T
�
�

T�(��,�(M(�))) ≃ ��,�(W(�, �)),
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Let � = �̄⊕ �⊕ � , B = {f�; � ∈ Δ+} a root basis of �̄ , {x�; � ∈ Δ+} linear coor-
dinate functions on �̄ with respect to B, where Δ+ is the set of positive roots for � . 
Consider the Weyl algebra A�̄ of �̄ generated by {x� , �x� ; � ∈ Δ+} and the Weyl alge-
bra AK(�̄) is topologically generated by the set {x�,n, �x�,n ; � ∈ Δ+, n ∈ ℤ} with the 
canonical commutation relations. The algebra AK(�̄) has a natural ℤ-grading with 
AK(�̄),0 ≃ A�̄.

For an A�̄-module N define the induced module

where AK(�̄),+ acts trivially on N. Moreover, if E is an �-module then define relaxed 
Wakimoto �̂�-module

where �c is the critical invariant symmetric bilinear form on � (cf. [45, Lemma 2.4]). 
This defines the Wakimoto functor from the category of modules over A�̄ ⊗ U(�) to 
the category of smooth �̂�-modules. We have the following properties of the Waki-
moto functor.

Theorem 3.3  [45, Theorem B] Let � ∈ Δ+ , � ∈ �∗.

•	 There exists a natural isomorphism 

 of functors, where T�
� is the twisting functor for � assigned to � . In particular, 

•	 If the Verma �̂�-module ��,�(M(�)) is simple, then 

 Hence, we have a free field realization of simple relaxed Verma module 
��,�(W(�, �));

•	 If ⟨� + �, �∨⟩ ∉ −ℕ for all � ∈ Δ+ , then 

Write � = k�0 for k ∈ ℂ , where �0 is the normalized �-invariant symmetric bilinear 
form on � satisfying

where �� is the Killing form and h∨ is the dual Coxeter number.

𝕄K(�̄)(N) = AK(�̄) ⊗AK(�̄),0⊗ℂAK(�̄),+
N,

𝕎𝜅,�(N ⊗ℂ E) = 𝕄K(�̄)(N)⊗ℂ 𝕄𝜅−𝜅c,�
(E),

T�◦��,� ≃ ��,�◦T
�
�

T�(��,�(M(�))) ≃ ��,�(W(�, �));

��,�(W(�, �)) ≃ ��,�(W(�, �)).

��c,�
(W(�, �)) ≃ ��c,�

(W(�, �)).

�� = 2h∨�0,
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The number k is admissible if the affine vertex algebra V�(�) is admissible as a 
highest weight module over �̂ in the sense of [69]. For example, if � = ��n+1 then k 
is admissible if and only if

A �-module M is called admissible of level k if k is an admissible number and M is 
an A(V�(�))-module. Explicit construction in terms of Gelfand–Tsetlin tableaux of 
all admissible simple highest weight �̂�n+1-modules and all admissible simple ��n+1
-modules induced from ��2 in the minimal nilpotent orbit was obtained in [50].

3.2 � Krichever‑Novikov algebras and orthogonal polynomials

Let R is a commutative ℂ-algebra and � be a simple complex Lie algebra. The uni-
versal central extension �̂ of �⊗ R is the Lie algebra (�⊗ R)⊕Ω1

R
∕dR , where 

Ω1
R
∕dR is the space of Kähler differentials modulo exact forms and

for x, y ∈ � , f , g ∈ R , and � ∈ Ω1
R
∕dR [71]. Unlike in the affine case, the uni-

versal central extension of �⊗ R need not to be one dimensional for a general R. 
When R is the algebra of meromorphic functions on a Riemann surface and with 
a fixed finite number of points where the poles are allowed then �⊗ R is a Krich-
ever-Novikov algebra [76]. In the genus 0 case we obtain the n-point algebras with 
R = ℂ[(t − x1)

−1,… , (t − xN)
−1] . The universal central extension of such algebras 

was described by in [14]. In particular, the universal central extension of a 4-point 
Lie algebra can be given explicitly in terms of Gegenbauer orthogonal polynomials 
[15], while in the elliptic case with R = ℂ[x, x−1, y | y2 = 4x3 − g2x − g3] , the uni-
versal central extension is described in terms of Pollaczek polynomials [16].

The ring R = ℂ[t, t−1, u]|u2 = t4 − 2ct2 + 1] , c ∈ ℂ ⧵ {±1} corresponds to the 
DJKM algebra which was introduced in [27] in the study of the solutions of the Lan-
dau-Lifshitz equation which describes time evolution of magnetism in solids. The 
universal central extension of the DJKM algebra was described explicitly in [23] in 
terms of certain polynomials Pk(c) in c which satisfy the recursion relation

for k ≥ 0 . Depending of the initial conditions we obtain four families of polynomi-
als, two of which are Gegenbauer polynomials and the other two are given by elliptic 
integrals. Assume for example that P−3(c) = P−2(c) = P−1(c) = 0 and P−4(c) = 1 . 
Then the generating function is defined via an elliptic integral:

k + n =
p

q
− 1 with p, q ∈ ℕ, (p, q) = 1, p ≥ n + 1.

[x⊗ f , y⊗ g] ∶= [xy]⊗ fg + (x, y)fdg, [x⊗ f ,𝜔] = 0

(6 + 2k)Pk(c) = 4kcPk−2(c) − 2(k − 3)Pk−4(c)

P−4(c, z) ∶=
�

k≥0
P−4,k−4(c)z

k = z
√
1 − 2cz2 + z4 �

4cz2 − 1

z2(z4 − 2cz2 + 1)3∕2
dz.
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The second elliptic case corresponds to the following initial conditions: 
P−1(c) = P−3(c) = P−4(c) = 0 and P−2(c) = 1 . It turned out that both families of pol-
ynomials satisfy the fourth order differential equation:

Theorem 3.4  [26] 

•	 The polynomials Pn = P−4,n satisfy the following differential equation: 

•	 The polynomials Qn = P−2,n satisfy the following differential equation 

Polynomials P−4,n is a special case of associated ultraspherical polynomials, 
which implies their orthogonality with respect to a certain weight function. On the 
other hand polynomials P−2,n are not associated ultraspherical polynomials. Never-
theless, their orthogonality with some weight function can be shown by using the 
Favard’s theorem (see [26] for details). Hence we obtain

Theorem 3.5  Polynomials P−4,n and P−2,n are non-classical orthogonal polynomials.

In particular, polynomials P−2,n is a new family of orthogonal polynomials. It is 
natural to expect that the universal central extensions of other Krichever-Novikov 
algebras might lead to more families of non-classical orthogonal polynomials. In the 
superelliptic case when R = ℂ[t, t−1, u|um = p(t)] , p(t) ∈ ℂ[t] the central extension 
was described recently in [85].

Generalizing Wakimoto’s construction the free field type realizations of the ellip-
tic Lie algebra and of the DJKM algebra were constructed in [17] and [25] respec-
tively for � = sl2 . Free field realization 3-point and 4-point algebras were constructed 
in [22] and [21] respectively.

4 � Vector fields on algebraic varieties

Lie algebras of vector fields on affine varieties are objects of fundamental impor-
tance. Nevertheless, their general theory, in particular their representation theory, at 
large is still undeveloped.

Let X ⊂ �n be an irreducible affine algebraic variety over an algebraically closed 
field � of characteristic zero, and let IX = ⟨g1,… , gm⟩ be the ideal of all functions 
that vanish on X. Let AX ∶= �[x1,… , xn]∕IX be the algebra of polynomial functions 
on X. Denote by VX ∶= Der�(AX) the Lie algebra of polynomial vector fields on X, 

16(c2 − 1)2P(iv)
n

+ 160c(c2 − 1)P���
n
− 8(c2(n2 − 4n − 46) − n2 + 4n + 22)P��

n

−24c(n2 − 4n − 6)P�
n
+ (n − 4)2n2Pn = 0.

16(c2 − 1)2Q(iv)
n

+ 160c(c2 − 1)Q���
n
− 8(c2(n2 − 4n − 42) − n2 + 4n + 18)Q��

n

−24c(n2 − 4n − 2)Q�
n
+ (n − 6)(n − 2)2(n + 2)Qn = 0.
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which is the Lie algebra of derivations of A = AX . The Lie algebra VX is simple if 
and only if X is a smooth variety [67, 87] (see also [10]). A classical example is the 
first Witt algebra which is the Lie algebra of polynomial vector fields on a circle. 
Its universal central extension is the famous Virasoro algebra which plays a crucial 
role in quantum field theory. Its generalization is the Lie algebra of vector fields on 
a torus

where A = �[x±1
1
,… , x±1

n
] and d1 = t1

�

�t1
,… , dn = tn

�

�tn
 span a Cartan subalgebra H 

of Wn . Setting tr = t
r1
1
… t

rn
n  for r = (r1,… , rn) ∈ ℤn , the Lie bracket in Wn is defined 

as follows:

Simple Harish-Chandra modules for the first Witt algebra W1 were classified in [81]. 
Numerous attempt were made to extend this classification to Lie algebras of poly-
nomial vector fields on n-dimensional torus. This was finally achieved in [8] where 
all simple modules in ℍ(U(Wn),U(H)) with finite multiplicities were classified 
using the new concept of AWn-modules which are Wn-modules and at the same time 
A-modules with some compatibility condition:

The theory of AWn-modules is a generalization of a D-module theory. We recall the 
definition of important class of tensor modules. Fix a finite-dimensional ��N-module 
U and � ∈ ℂn . Define the module of tensor fields

with the action

where r ∈ ℤn,� ∈ � + ℤn, i = 1,… , n.
In particular, the modules of differential forms are tensor fields modules: 

q�Ωk(𝕋 n) = T(Λkℂn, �) . They form the de Rham complex

If module of tensor fields is not isomorphic to one of the members of this de Rham 
complex then it is simple [30].

Another class of Wn-modules consists of highest weight type modules. Choose 
a ℤ-grading on Wn by degree in tn . Then a zero component W0

n
 is a semidirect 

product of Wn−1 with an abelian ideal. We take a Wn−1-module of tensor fields for 
Wn−1 and define the action of the abelian ideal by multiplication rescaled with a 

Wn = Der(�[x±1
1
,… , x±1

n
]) =

n

⊕
p=1

Adp,

[trdi, t
sdj] = sit

r+sdj − rjt
r+sdi, i, j = 1,… , n; r, s ∈ ℤ

n.

x(fv) = (xf )v + f (xv), f ∈ A, x ∈ Wn, v ∈ M.

T(U, 𝛾) = q𝛾ℂ[q±1
1
,… , q±1

n
]⊗ U

trdi(q
𝜇 ⊗ u) = 𝜇iq

𝜇+r ⊗ u +

n∑

k=1

rkq
𝜇+r ⊗ Ekiu,

q�Ω0(� n)
d

⟶ q�Ω1(� n)
d

⟶ …
d

⟶ q�Ωn(� n).
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complex parameter � , yielding a W0
n
-module T(U, � , �) . Setting W+

n
T(U, � , �) = 0 

we construct the induced Wn-module M(U, � , �) which has a unique simple quo-
tient L(U, � , �) with finite weight multiplicities. For g ∈ �� define a twisting 
L(U, � , �)g , which corresponds to a change in the ℤ-grading on Wn . Vertex opera-
tor realizations of simple Wn-modules of the highest weight type were given in 
[9].

The classification of simples Harish-Chandra Wn-modules is as follows:

Theorem 4.1  [8, Theorem 1.1] Every simple module in ℍ(U(Wn),U(H)) with finite 
multiplicities is isomorphic to either T(U, �) , where U is different from Λkℂn , 
k = 0,… , n , or L(U, � , �)g , or a submodule dΩk(𝛽) ⊂ Ωk+1(𝛽) for 0 ≤ k < n and 
� ∈ ℂn.

Representations of VX for X = �n
�
 were studied by Rudakov [84] and for 

X = �2 in [12]. A systematic study of representations of the Lie algebras VX for 
arbitrary smooth affine varieties X was initiated in [11]. Developing ideas of [12] 
and [8] two families of simple VX-modules were constructed: Rudakov modules 
and gauge modules.

Let p ∈ X , U a finite-dimensional simple ��N-module, where N is the 
dimension of X. Then U is a module over the smash product A#U(��N) , where 
f ⋅ u ∶= f (p)u for f ∈ � and u ∈ U . The Rudakov module is an induced module

this generalizes highest weight type modules for Wn.
Gauge modules are generalizations of tensor modules determined by the gauge 

fields (see [11] for details) Bi ∶ A(h) ⊗ U → A(h) ⊗ U , i = 1,… ,N , where A(h) is 
the localization of A by a minor h of the Jacobian matrix of IX of maximal rank, 
and U is a finite-dimensional ��N-module. Then �(h) ⊗ U is a Der(�(h))-module 
with the action

where f , g ∈ A(h) and u ∈ U.
An AVX-module M is a gauge module if it is isomorphic to an AVX-submodule 

of A(h) ⊗ U of finite rank over A for any minor h of maximal rank.

Theorem 4.2  If X is smooth then Rp(U) and gauge modules are simple �VX-module 
[11]. Moreover, If U is not an exterior power of the dual to natural module (resp. 
natural module), then Rp(U) (resp. a gauge module) is simple as a VX-module [13].

Acknowledgements  Supported in part by CNPq (304467/2017-0) and by the Fapesp (2018/23690-6).

Rp(U) ∶= A#U(VX)⊗A#U(��N )
U,

(

f
𝜕

𝜕ti

)

⋅ (g⊗ u) = f
𝜕g

𝜕ti
⊗ u + fg⊗ Biu +

∑

k∈ℤN
+�{0}

1

k!
g
𝜕kf

𝜕tk
⊗ 𝜌

(

tk
𝜕

𝜕ti

)

u,



153

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:131–156	

References

	 1.	 Adamović, D.: A realization of certain modules for the N = 4 superconformal algebra and the affine 
Lie algebra A(1)

1
 . Transform. Groups 21, 299–327 (2016)

	 2.	 Arakawa, T., Futorny, V., Ramirez, L.: Weight representations of admissible affine vertex algebras. 
Comm. Math. Phys. 353(3), 1151–1178 (2017)

	 3.	 Bavula, V.: Generalized Weyl algebras and their representations. Algebra i Analiz 4, 75–97 (1992)
	 4.	 Bekkert, V., Benkart, G., Futorny, V., Kashuba, I.: New irreducible modules for Heisenberg and 

affine Lie algebras. J. Algebra 373, 284–298 (2013)
	 5.	 Benitez, M. G.: Gelfand-Tsetlin varieties for Yangians (2018). arXiv:​1802.​09938
	 6.	 Benitez, Monsalve G.: Gelfand-Tsetlin varieties for ��n . Int. J. Algebra Comput. 30, 1485–1504 

(2020)
	 7.	 Bernard, D., Felder, G.: Fock representations and BRST cohomology in sl(2) current algebra. 

Comm. Math. Phys. 127(1), 145–168 (1990)
	 8.	 Billig, Y., Futorny, V.: Classification of irreducible representations of Lie algebra of vector fields on 

a torus. J. Reine Angew. Math. 2016, 199–216 (2016)
	 9.	 Billig, Y., Futorny, V.: Representations of Lie algebra of vector fields on a torus and chiral de Rham 

complex. Trans. Amer. Math. Soc. 366, 4697–4731 (2014)
	10.	 Billig, Y., Futorny, V.: Lie algebras of vector fields on smooth affine varieties. Commun. Algebra 

46, 1–17 (2018)
	11.	 Billig, Y., Futorny, V., Nilsson, J.: Representations of Lie algebra of vector fields on affine varieties. 

Israel J. Math. 233, 379–399 (2019)
	12.	 Billig, Y., Nilsson, J.: Representations of the Lie algebra of vector fields on a sphere. J. Pure Appl. 

Algebra 223, 3581–3593 (2019)
	13.	 Billig, Y., Nilsson, J., Zaidan, A.: Gauge modules for the Lie algebras of vector fields on affine vari-

eties. Algebras Represent. Th. (2020). https://​doi.​org/​10.​1007/​s10468-​020-​09983-9
	14.	 Bremner, M.: Generalized affine Kac-Moody Lie algebras over localizations of the polynomial ring 

in one variable. Canad. Math. Bull. 37(1), 21–28 (1994)
	15.	 Bremner, M.: Universal central extensions of elliptic affine Lie algebras. J. Math. Phys. 35(12), 

6685–6692 (1994)
	16.	 Bremner, M.: Four-point affine Lie algebras. Proc. Amer. Math. Soc. 123(7), 1981–1989 (1995)
	17.	 Bueno, A., Cox, B., Futorny, V.: Free field realizations of the elliptic affine Lie algebra 

��(2,R)⊕ (ΩR∕dR) . J. Geom. Phys. 59(9), 1258–1270 (2009)
	18.	 Bunke, T.: Classification of irreducible non-dense modules for A(2)

2
 . Algebra Discrete Math. 2, 

11–26 (2009)
	19.	 Cox, B.: Verma modules induced from nonstandard Borel subalgebras. Pacific J. Math. 165, 269–

294 (1994)
	20.	 Cox, B.: Fock space realizations of imaginary Verma modules. Algebr. Represent. Theory 8, 173–

206 (2005)
	21.	 Cox, B.: Realizations of the four point affine Lie algebra ��(2,R)⊕ (ΩR∕dR) . Pacific J. Math. 

234(2), 261–289 (2008)
	22.	 Cox, B., Jurisich, E.: Realizations of the three point Lie algebra ��(2,R)⊕ (ΩR∕dR) . Pacific J. Math. 

270(1), 27–48 (2014)
	23.	 Cox, B., Futorny, V.: DJKM algebras I: their universal central extension. Proc. Amer. Math. Soc. 

139(10), 3451–3460 (2011)
	24.	 Cox, B., Futorny, V.: Intermediate Wakimoto modules for affine ��(n + 1,ℂ) . J. Phys. A 37(21), 

5589–5603 (2004)
	25.	 Cox, B., Futorny, V., Martins, R.: Free field realizations of the Date-Jimbo-Kashiwara-Miwa alge-

bra. In: Developments and Retrospectives in Lie Theory, pp. 111–136. Springer, Cham (2014)
	26.	 Cox, B., Futorny, V., Tirao, J.: DJKM algebras and non-classical orthogonal polynomials. J. Differ. 

Eqn. 255(9), 2846–2870 (2013)
	27.	 Date, E., Jimbo, M., Kashiwara, M., Miwa, M.: Landau-Lifshitz equation: solitons, quasiperiodic 

solutions and infinite-dimensional Lie algebras. J. Phys. A 16(2), 221–236 (1983)
	28.	 Drozd, Y., Ovsienko, S., Futorny, V.: Harish-Chandra subalgebras and Gelfand Zetlin modules. In: 

Finite Dimensional Algebras and Related Topics, pp. 79–93. Springer, Dodrecht (1994)
	29.	 Early, N., Mazorchuk, V., Vyshniakova, E.: Canonical Gelfand-Zeitlin modules over orthogonal 

Gelfand-Zeitlin algebras. IMRN 2020, 6947–6966 (2020)

http://arxiv.org/abs/1802.09938
https://doi.org/10.1007/s10468-020-09983-9


154	 São Paulo Journal of Mathematical Sciences (2022) 16:131–156

1 3

	30.	 Eswara Rao, S.: Irreducible representations of the Lie algebra of the diffeomorphisms of a d-dimen-
sional torus. J. Algebra 182, 401–421 (1996)

	31.	 Feigin, B., Frenkel, E.: A family of representations of affine Lie algebras. Uspekhi Mat. Nauk 43(5), 
227–228 (1988)

	32.	 Feigin, B., Semikhatov, A., Tipunin, I.: Equivalence between chain categories of representations of 
affine sl(2) and N = 2 superconformal algebras. J. Math. Phys. 39, 3865–3905 (1998)

	33.	 Futorny, V.: Representations of affine Lie algebras. Queen’s Papers in Pure and Applied Math. vol. 
106. Kingston. Ont, Canada (1997)

	34.	 Futorny, V.: Irreducible non-dense A(1)

1
-modules. Pacific J. Math. 172, 83–99 (1996)

	35.	 Futorny, V.: Verma type modules of level zero for affine Lie algebras. TAMS 349, 2663–2685 
(1997)

	36.	 Futorny, V., Grantcharov, D., Ramirez, L.E.: On the classification of irreducible Gelfand-Tsetlin 
modules of ��(3) . Contemp. Math. 623, 63–79 (2014)

	37.	 Futorny, V., Grantcharov, D., Ramirez, L.E.: Irreducible generic Gelfand-Tsetlin modules of ��(n) . 
Symmetry 11, 018 (2015)

	38.	 Futorny, V., Grantcharov, D., Ramirez, L.E.: Singular Gelfand-Tsetlin modules for ��(n) . Adv. Math. 
290, 453–482 (2016)

	39.	 Futorny, V., Grantcharov, D., Ramirez, L.E.: New Singular Gelfand-Tsetlin modules of gl(n) of 
index 2 . Commun. Math. Phys. 355, 1209–1241 (2017)

	40.	 Futorny, V., Grantcharov, D., Ramirez, L.E.: Drinfeld category and the classification of singular 
Gelfand-Tsetlin ��n-modules. IMRN 5, 1463–1478 (2019)

	41.	 Futorny, V., Grantcharov, D., Ramirez, L.E., Zadunaisky, P.: Gelfand-Tsetlin Theory for Rational 
Galois Algebras. Israel J. Math. 239, 99–128 (2020)

	42.	 Futorny, V., Grantcharov, D., Ramirez, L.E., Zadunaisky, P.: Bounds of Gelfand-Tsetlin modules 
and tableaux realizations of Verma modules. J. Algebra 556, 412–436 (2020)

	43.	 Futorny, V., Kashuba, I.: Generalized loop modules for affine Kac-Moody algebras. In: Develop-
ments and Retrospectives in Lie Theory, pp. 175–183. Springer, Cham (2014)

	44.	 Futorny, V., Kashuba, I.: Structure of parabolically induced modules for affine Kac-Moody algebras. 
J. Algebra 500, 362–374 (2018)

	45.	 Futorny, V., Krizka, L.: Positive energy representations of affine vertex algebras. Commun. Math. 
Phys. 383(2), 841–891 (2021). https://​doi.​org/​10.​1007/​s00220-​020-​03861-7

	46.	 Futorny, V., Krizka, L.: Geometric construction of Gelfand-Tsetlin modules over simple Lie alge-
bras. J. Pure Appl. Algebra 223(11), 4901–4924 (2019)

	47.	 Futorny, V., Krizka, L., Somberg, P.: Geometric realizations of affine Kac-Moody algebras. J. Alge-
bra 528, 177–216 (2019)

	48.	 Futorny, V., Molev, A., Ovsienko, S.: Harish-Chandra modules for Yangians representation theory. 
AMS 9, 426–454 (2005)

	49.	 Futorny, V., Molev, A., Ovsienko, S.: The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules 
for finite W-algebras. Adv. Math. 223, 773–796 (2010)

	50.	 Futorny, V., Morales, O., Ramirez, L.: Simple modules for Affine vertex algebras in the minimal 
nilpotent orbit. IMRN. arXiv:​2002.​05568​v1 (to appear)

	51.	 Futorny, V., Ovsienko, S.: Kostant’s theorem for special filtered algebras. Bull. London Math. Soc. 
37, 1–13 (2005)

	52.	 Futorny, V., Ovsienko, S.: Galois orders in skew monoid rings. J. Algebra 324, 598–630 (2010)
	53.	 Futorny, V., Ovsienko, S.: Fibers of characters in Gelfand-Tsetlin categories. Trans. Am. Math. Soc. 

366(8), 4173–4208 (2014)
	54.	 Futorny, V., Ovsienko, S., Saorin, M.: Gelfand-Tsetlin categories. Contemp. Math. 537, 193–203 

(2011)
	55.	 Futorny, V., Ovsienko, S., Saorin, M.: Torsion theories induced from commutative subalgebras. J. 

Pure Appl. Algebra 215(12), 2937–2948 (2011)
	56.	 Futorny, V., Ramirez, L.E., Zhang, J.: Combinatorial construction of Gelfand-Tsetlin modules for 

��n . Adv. Math. 343, 681–711 (2019)
	57.	 Futorny, V., Ramirez, L.E., Zhang, J.: Gelfand-Tsetlin representations of finite W -algebras. J. Pure 

Appl. Algebra 224, 106226 (2020)
	58.	 Futorny, V., Schwarz, J.: Quantum linear Galois orders. Comm. Algebra 47(12), 5361–5369 (2019)
	59.	 Futorny, V., Schwarz, J.: Algebras of invariant differential operators. J. Algebra 542, 215–229 

(2020)

https://doi.org/10.1007/s00220-020-03861-7
http://arxiv.org/abs/2002.05568v1


155

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:131–156	

	60.	 Futorny, V., Schwarz, J.: Noncommutative Noether’s problem vs classic Noether’s problem. Math-
ematische Zeitschrift 295, 1323–1335 (2020)

	61.	 Futorny, V., Tsylke, A.: Classification of irreducible nonzero level modules with finite-dimensional 
weight spaces for affine Lie algebras. J. Algebra 238, 426–441 (2001)

	62.	 Gelfand, I., Graev, M.: Finite-dimensional irreducible representations of the unitary and complete 
linear group and special functions associated with them. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 
29, 1329−1356 (1965)

	63.	 Gelfand, I.M., Tsetlin, M.S.: Finite dimensional representations of the group of unimodular matri-
ces. Doklady Akad. Nauk SSSR 71, 1017–1020 (1950)

	64.	 Gomes, C., Ramirez, L.E.: Families of irreducible singular Gelfand-Tsetlin modules of gl(n) . J. Pure 
Appl. Algebra 222, 3521–3537 (2018)

	65.	 Hartwig, J.: Principal Galois orders and Gelfand-Zeitlin modules. Adv. Math. (2017). https://​doi.​
org/​10.​1016/j.​aim.​2019.​106806

	66.	 Jakobsen, H., Kac, V.:A new class of unitarizable highest weight representations of infinite dimen-
sional Lie algebras. In: Non-linear Equations in Classical and Quantum Field Theory, pp. 1–20. 
Springer, Berlin (1985)

	67.	 Jordan, D.: On the simplicity of Lie algebras of derivations of commutative algebras. J. Algebra 
228, 580–585 (2000)

	68.	 Kac, V.: Infinite Dimensional Lie Algebras, vol. 3. Cambridge University Press, Cambridge (1990)
	69.	 Kac, V., Wakimoto, M.: Classification of modular invariant representations of affine algebras. Infi-

nite-dimensional Lie algebras and groups (Luminy-Marseille) 7, 138–177 (1988)
	70.	 Kashuba, I., Martins, R.: Free field realizations of induced modules for affine Lie algebras. Comm. 

Algebra 42, 2428–2441 (2014)
	71.	 Kassel, C., Loday, J.-L.: Extensions centrales d’algèbres de Lie. Ann. Inst. Fourier (Grenoble) 

32(4), 119–142 (1983)
	72.	 Kawasetsu, K., Ridout, D.: Relaxed highest-weight modules I: Rank 1 case. Comm. Math. Phys. 

368(2), 627–663 (2019)
	73.	 Kawasetsu, K., Ridout, D.: Relaxed hieghest-weight modules II: Classifications for affine vertex 

algebras. Contemp. Math. arXiv:​1906.​02935 (2019). https://​doi.​org/​10.​1142/​S0219​19972​15003​71 
(to appear)

	74.	 Kostant, B.: Lie groups representations on polynomial rings. Amer. J. Math. 85, 327–404 (1963)
	75.	 Kamnitzer, J., Tingley, P., Webster, B., Weekes, A., Yacobi, O.: On category O for affine Grass-

mannian slices and categorified tensor products. Proc. London Math. Soc. 119, 1179–1233 (2019)
	76.	 Krichever, I., Novikov, S.: Algebras of Virasoro type, Riemann surfaces and strings in Minkowski 

space. Funktsional. Anal. i Prilozhen. 21(4), 47–61 (1987)
	77.	 Lemire, F., Patera, J.: Formal analytic continuation of Gelfand finite-dimensional representations of 

gl(n,ℂ) . J. Math. Phys. 20, 820–829 (1979)
	78.	 Lemire, F., Patera, J.: Gelfand representations of sl(n,ℂ) . Algebras Groups Geom. 2, 14–166 (1985)
	79.	 Martins, R.: Free field realizations of certain modules for affine Lie algebra sln . Algebra Discrete 

Math. 12, 28–52 (2011)
	80.	 Martins, R.: J-Intermediate Wakimoto Modules. Commun. Algebra 41, 3591–3612 (2013)
	81.	 Mazorchuk, V.: Tableaux realization of generalized Verma modules. Canad. J. Math. 50(4), 816–

828 (1998)
	82.	 Ovsienko, S.: Finiteness statements for Gelfand–Tsetlin modules. In: Algebraic structures and their 

applications, Math. Inst., Kiev (2002)
	83.	 Ramirez, L.E., Zadunaisky, P.: Gelfand-Tsetlin modules over gl(n) with arbitrary characters. J. Alge-

bra 502, 328–346 (2018)
	84.	 Rudakov, A.N.: Irreducible representations of infinite-dimensional Lie algebras of Cartan type. Izv. 

Akad. Nauk SSSR Ser. Mat. 38, 835–866 (1974)
	85.	 Santos, F.: On the universal central extension of the superelliptic affine Lie algebras. arXiv:​1808.​

08570​v4
	86.	 Schlichenmaier, M.: From the Virasoro algebra to Krichever-Novikov type algebras and beyond. In: 

Harmonic and Complex Analysis and its Applicati, pp. 325–358. Birkhauser, Cham (2013)
	87.	 Siebert, T.: Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0 . 

Math. Ann. 305, 271–286 (1996)
	88.	 Vishnyakova, E.: A geometric approach to 1-singular Gelfand-Tsetlin gln-modules. Differ. Geom. 

Appl. 56, 155–160 (2018)
	89.	 Vishnyakova, E.: Geometric approach to p-singular Gelfand-Tsetlin gln-modules, arXiv:​1705.​05793

https://doi.org/10.1016/j.aim.2019.106806
https://doi.org/10.1016/j.aim.2019.106806
http://arxiv.org/abs/1906.02935
https://doi.org/10.1142/S0219199721500371
http://arxiv.org/abs/1808.08570v4
http://arxiv.org/abs/1808.08570v4
http://arxiv.org/abs/1705.05793


156	 São Paulo Journal of Mathematical Sciences (2022) 16:131–156

1 3

	90.	 Wakimoto, M.: Fock representations of the affine Lie algebra A(1)

1
 . Comm. Math. Phys. 104(4), 605–

609 (1986)
	91.	 Webster, B.: Gelfand-Tsetlin modules in the Coulomb context. arXiv:​1904.​05415
	92.	 Zadunaisky, P.: A new way to construct 1-singular Gelfand-Tsetlin modules. Algebra Discrete Math. 

23(1), 180–193 (2017)
	93.	 Zhelobenko, D.P.: Compact Lie groups and their representations, Nauka, Moscow, 1970 (Transla-

tions of mathematical monographs, vol. 40. AMS, Providence, Rhode Island (1973)
	94.	 Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9(1), 

237–302 (1996)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://arxiv.org/abs/1904.05415

	Representations of Lie algebras
	Abstract
	1 Introduction
	2 Gelfand-Tsetlin theories
	2.1 Harish-Chandra modules
	2.2 Galois algebras
	2.3 Gelfand-Tsetlin -modules
	2.4 Representations of W-algebras
	2.5 Generalized Gelfand-Tsetlin theories

	3 Representations of infinite-dimensional Lie algebras
	3.1 Affine Lie algebras
	3.2 Krichever-Novikov algebras and orthogonal polynomials

	4 Vector fields on algebraic varieties
	Acknowledgements 
	References




