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Abstract

Most significant contributions to the Representation Theory of Lie algebras by the
members of the research group of IME-USP and their collaborators are described.
The focus is made on the Gelfand-Tsetlin theories, representations of affine Kac-
Moody algebras, related vertex algebras and Lie algebras of vector fields.
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1 Introduction

Representation theory of Lie algebras is an active mainstream branch of Mathemat-
ics which plays an increasingly important role in different areas of modern science.
In particular, representations of Lie algebras are of fundamental use in geometry,
mathematical physics, topology, combinatorics, number theory, knot theory etc. This
theory was a focus of the research group “Non-associative algebras, their represen-
tations, identities and relations” of IME-USP for more than 20 years. The ultimate
goal is to develop a general framework and new methodologies to address challeng-
ing classification and structure problems using algebraic, geometric and combinato-
rics techniques. We will describe the most notable results obtained by the members
of the research group on the representations of Lie algebras. Another paper of this
volume will focus onstructure results of non-associative algebras.

First we consider Gelfand-Tsetlin theory for finite-dimensional Lie algebras and
related structures which have attracted a considerable interest in the last 40 years
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after the pioneering work of I.Gelfand and M.Tsetlin [63]. It can be viewed in a
more general context of Harish-Chandra categories [28], which play an important
role in the representation theory. The classification of simple objects in these cat-
egories is of prime importance.

As an attempt to unify the representation theories of the universal enveloping
algebra of the full linear Lie algebra g, and of the generalized Weyl algebras, a
concept of Galois orders was introduced in [52]. The idea grows out of the classi-
cal concept of a Gelfand-Tsetlin basis for finite-dimensional representations of sim-
ple Lie algebras. This provided a new framework for the study of representation of
various classes of algebras. Next we will focus on representation theory of infinite-
dimensional Lie algebras. We start with affine Kac-Moody algebras, which is one of
the most active and fascinating branches in the theory of Lie algebras. These alge-
bras and related structures of vertex algebras, Yangians etc. serve as a motivation for
mathematical models in quantum field theory and give rise to fundamentally new
phenomena. Two closely related mathematical models for the states of elementary
particles or strings are called Verma modules and Fock spaces (also called free field
realizations). This motivated the theory of vertex algebras and construction of dif-
ferent free field realizations of the affine Kac-Moody algebra and related structures.
There is a growing interest in the study of non-highest weight representations of
affine Lie algebras with an expectation of their importance for non-rational affine
vertex algebras. In particular, relaxed Verma modules have connections to the rep-
resentation theory of conformal vertex algebras and conformal field theories, e.g.
N = 2 conformal field theory [32] and N = 4 conformal field theory [1]. The study
of positive energy representations of simple affine vertex algebras can be reduced to
the representations of corresponding finite-dimensional Lie algebras using the Zhu’s
functor which allows to construct new families of simple modules for vertex alge-
bras [94].

One of the main reasons that the theory of affine Kac-Moody algebras has become
such a popular area of research is that they (untwisted ones) have a realization given
by the one dimensional central extension of the loop algebra, ¢ @ C[t,t~'], where
g is a simple finite-dimensional Lie algera. Replacing C[z,7~'] by any commutative
associative algebra R we obtain a new infinite-dimensional Lie algebra. In particu-
lar, a class of Krichever-Novikov Lie algebras corresponds to the case when R is
an algebra of meromorphic functions on a Riemann surface with finite number of
poles. The case of Laurent polynomials corresponds to the Riemann sphere C U oo
with poles allowed only in {0, oo }. For the theory of Krichever-Novikov Lie algebras
we refer to [86]. If instead of the sphere with two punctures we consider any com-
plex algebraic curve of genus O with a fixed set of n distinct points where the poles
are allowed, then we obtain n-point affine Lie algebras. We obtain a class of elliptic
Lie algebras if genus is 1 and superelliptic Lie algebras if genus is greater than 1.

Integrable systems arising from the Landau-Lifshitz differential equation [27] are
described by the action on the space of solutions of certain infinite-dimensional Lie
algebra, called the DJKM algebra, which is an example of a n-point Lie algebra. The
universal central extension of the DJKM algebra can be described in terms of cer-
tain families of polynomials. It led to the discovery of a new family of non-classical
orthogonal polynomials satisfying the fourth order differential equation [26]. Other
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families of polynomials that appear in the description of the central extension are
examples of the associated Jacobi polynomials of Ismail-Wimp.

Finally, we will discuss recent advances in the representation theory of Lie
algebras of vector fields on affine varieties, whose history goes back to Sophus
Lie. They are defined as derivation algebras of the ring of polynomial functions
on an irreducible affine variety over an algebraically closed field of characteristic
0. These algebras is a source of examples of simple infinite-dimensional Lie alge-
bras which are connected with the symmetries of geometric structures and with
the symmetries of systems with infinitely many degrees of freedom.

The following members of the research group made a contribution to the theory
and related topics: A.Bianchi (USP and Unesp) A.Bueno (USP and UFMG), T.Bunke
(USP), M.Cardoso (USP), C.Duque (USP), V.Futorny (USP), D.Grantcharov (Uni-
versity of Texas), C.Gomes (USP and UFRN), A.Grishkov (USP), M.Guerrini
(USP), J.Hartwig (USP and Iowa State University), K.Iusenko (USP), I.Kashuba
(USP), L.Krizka (USP), R.Martins (USP and UNESP), G.Monsalve (USP and
UFAM), O.Morales (USP), W.Mutis (USP and University of Narifio), A.Oliveira
(USP), E.Ramirez (USP and UFABC), H.Rocha (USP), F. dos Santos (USP),
A.Sargeant (USP and UFOP), J.Schwarz (USP), E.Vishnyakova (USP and UFMG),
B.Wilson (USP), E.Wilson (USP), A.Zaidan (USP) P.Zadunaisky (USP and Univer-
sity of Buenos Aires), J.Zhang (USP and Central China Normal University).

The research group benefited greatly from the collaboration with T.Arakawa
(Kyoto University), V.Bavula (Sheffield University), V.Bekkert (UFMG), G.Benkart
(UW Madison), , Y.Billig (Carleton), W.Bock (TU Kaiserslautern), P.Bressler
(Universidad de los Andes), L.Calixto (UFMG), B.Cox (College of Charleston),
A.Davydov (Ohio University), I.Dimitrov (Queen’s University), Y.Drozd (Acad-
emy of Sciences, Ukraine), F.Eshmatov (Tashkent University), K.Iohara (Uni-
versity of Lyon), D.Koshloukova (Unicamp), F.Marko (Penn State University),
O.Mathieu (University of Lyon), V.Mazorchuk (University of Uppsala), K.Misra
(NCSU), A.Molev (University of Sydney), M.Neklyudov (UFAM), J.Nilsson (Chal-
mers University), S.Ovsienko (Kyiv University), [.Penkov (Jacobs University),
A.Premet (University of Manchester), E.Rao (Tata Institute), L.Rigal (Université
Sorbonne Paris Nord), M.Rosso (University of Paris), M.Saorin (University of Mur-
cia), V.Serganova (UC Berkeley), V.Sergeichuk (Academy of Sciences, Ukraine),
A.Shindyapin (Eduardo Mondlane University), S.Sidki (UnB), A.Solotar (Univer-
sity of Buenos Aires), P.Somberg (Charles University), K.Zhao (Wilfrid Laurier
University), A.Zubkov (Sobolev Institute of Mathematics, Omsk Branch).

This paper is a tribute to the memory of my friends and colleagues Ben Cox,
Sergiy Ovsienko and Vladimir Sergeichuk.

2 Gelfand-Tsetlin theories

The field k is assumed to be algebraically closed of characteristic 0. All rings are
assumed to be k-algebras.
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2.1 Harish-Chandra modules

Let U be an associative algebra over the field k, I' C U a noetherian commutative sub-
algebra, Specm I the set of maximal ideals of I'. Following [28] we say that M is a
Harish-Chandra module (with respect to I') if M is a finitely generated U-module such

that
M= @ M(m),

me Specm I”
where
M@m) = {x € M |3k, m*x = 0}.

The support of a Harish-Chandra module M is a subset of SpecmI" consisting of
those m for which M(m) # 0.

We denote by H(U, I') the category of all Harish-Chandra U-modules. Gelfand-Tset-
lin theories study the categories H(U, I') with maximal commutative I'.

We will assume that I' is a Harish-Chandra subalgebra of U [28]: for any u € U
thel'-bimodule I'ul” is finitely generated both as a left and as a right I'-module. This
notion proved to be very powerful in the study of Harish-Chandra modules. Note that
M € H(U,T)if and only if every finitely generated I"-submodule of M has finite length.
For other equivalent conditions see [54].

For a subset D C Specm I denote by H(U, I, D) the full subcategory in H(U, I') con-
sisting of modules whose support is a subset of D. For an element u € U set

X, = {(m,n) € SpecmI" X SpecmI"|I'/n is a subquotient of (I'ul')/(I'um)}.

Denote by A the minimal equivalence on Specm I containing sets X, for all u € U
and set A(U,T') to be the set of A—equivalence classes on Specm .
We have

H(U,T) = @ H(U,T, D).
DeA(U,)

Let 'y, = lim_, I'/m* be the completion of I" with respect to a maximal ideal m.
The following category AU,I" was introduced in [28], see also [54] for more details.
The set of objects Ob Ay, - consists of maximal ideals of I" while the space of mor-
phisms Ay -(m, n) is defined as

Ayr(m,n) = lim U/("U + Um™) =

=limI['/n" @U@ ['/m™. M

«—n,m

The category Ay, - splits into the sum of full subcategories,

Ayr = @ Ayr(D),

DeAU,T)
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where A, (D) denotes the restriction of A - on D.

The category Ay is endowed with the topology of the inverse limit and the
category of k-vector spaces (k — mod) with the discrete topology. Consider
the category Ay — mod, of discrete modules (that is, continuous functors)
M : Ayr—k — mod.

Proposition 2.1 ([ [28], Theorem 17]) Categories AU’F — mod ; and H(U,T") are
equivalent.

To study simple modules in the category H(U,I') one may try to parametrize
them by simple I'-modules, or equivalently by maximal ideals of I'. The restric-
tion functor from the category H(U,I') to the category of torsion I'-modules
induces a map @ from Specm I to the set of isomorphism classes Irr(U) of sim-
ple U-modules in H(U,T"). Given a maximal ideal m € SpecmI', @(m) consist of
those simple V € H(U,T") such that V(m) # 0 (or left maximal ideals of U which
contain m).

In the case when both U and I'" are commutative and I' C U is an integral
extension then any prime ideal of I" lifts to a prime ideal of U. Moreover, if U is
finitely generated module over I" then number of liftings is finite for every prime
ideal of I". This is reflected in the Hilbert-Noether theorem when U is the sym-
metric algebra of a finite-dimensional vector space V and I" is the subalgebra of
G-invariants of U for a finite subgroup G of GL(V).

The non-emptiness of the fibers of @ is related to the freeness of U over I'
as a right module. A remarkable result of Kostant [74] shows that the universal
enveloping algebra U of a reductive Lie algebra is free over the center I' of U.
Any central character of I' defines a block of H(U,I") of modules with such cen-
tral character, and each block contains infinitely many simple objects.

Ovsienko [82] introduced a technique to study the freeness of universal envel-
oping algebras of Lie algebras over polynomial subalgebras. A graded version
of this technique was developed in [51] which allows to apply this technique to
a large class of special filtered associative algebras. An associative algebra U
endowed with an increasing filtration is special if any element can be written
uniquely as a linear combination of ordered monomials in some fixed generators
of U and if the associated graded algebra is polynomial. We have

Theorem 2.1 ( [51]) Let U be a special filtered k-algebra. Let g,, ---, g, € U be
mutually commuting elements whose graded images form a complete intersection for
the associated graded algebra of U. Then U is a free left (right) klg,, ..., g Jmodule.

This result was used to show the freeness of the restricted Yangian of gl, over
its center [51] and the freeness of the restricted Yangian of gl, over its Gelfand-
Tsetlin subalgebra. The problem of the freeness is related to the equidimension-
ality of certain Gelfand-Tsetlin varieties. In the case of restricted Yangian of gl,
this variety was studies in [5], see also [6].
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2.2 Galois algebras

Theory of Galois rings (orders) was developed in [52] to deal with the problem of
the finiteness of the fibers ®(m) of maximal ideals of commutative subalgebras.

Let R be a ring, M a monoid acting on R by ring automorphisms and R * M is
the skew monoid ring.

Let I' be an integral domain, K the field of fractions of I and L a finite Galois
extension of K with the Galois group G = Gal(L/K). Consider the action of G by
conjugation on Aut (L). Let M be any G-invariant submonoid of Aut (L). We assume
the following property of M: if m;,m, € M and m |y = m,|, then m; = m,.
Denote by KC = (L * M)C the subring of invariants.

Definition 2.1 A finitely generated I"-subring U of K is called a Galois ring over I if
UK =KU =K.

We assume that all Galois rings are k-algebras. In this case we say that a Galois
ring is a Galois algebra over I'.

Example 2.1 Let U = I'(c,a) be a generalized Weyl algebra of rank 1 ( [3]), where "
is a unital integral domain, a € I', o an automorphism of I of infinite order. It is gen-
erated over T" by X and Y such that Xy = ¢(y)X, Yy = 6~' ()Y, YX = a, XY = o(a).
Let K be the field of fractions of I' and M =~ Z is a subgroup of AutI" generated by
o. Then U can be embedded into the skew group algebra K % Z when X — ¢ and
Y — ac~!. Clearly, U is a Galois algebra over T'. Note that U ~ T % Z if a is invert-
ibleinT.

A Galois ring U over I is right (respectively left) Galois order [52], if for any
finite-dimensional right (respectively left) K-subspace W C U[S™!] (respectively
W C[S7HU), WN U is a finitely generated right (respectively left) I-module. A
Galois ring is Galois order if it is both right and left Galois order.

This is a natural non-commutative generalization of the classical concept of order
in skew group rings. If I' is finitely generated and U is a Galois order over I then I
is a Harish-Chandra subalgebra of U. Moreover, if M is a group then I' is a maximal
commutative subalgebra of U.

Examples of Galois orders include the generalized Weyl algebras over integral
domains with infinite order automorphisms (e.g. the Weyl algebras, quantized
Weyl algebras, the quantum plane, the g-deformed Heisenberg algebra, the Witten-
Woronowicz algebra) [59], the universal enveloping algebra of gl, over the Gelfand-
Tsetlin subalgebra [28], finite W-algebras [49] among the others. We also have

Theorem 2.2 ( [52], Theorem 5.2, (2)) If a Galois ring U over a noetherian domain
" is projective as a right (left) I'-module then U is a right (left) Galois order.

Further examples of Galois orders were recently constructed in [65]. Set

K = (L % M) and
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Kr={xeK|x(y)eT for ally eT}.

Then - is a Galois order over I' in K [65, Theorem 2.21]. Principal Galois orders
are Galois subrings of K. This includes orthogonal Gelfand-Tsetlin algebras [65,
Theorem 4.6], quantum orthogonal Gelfand-Tsetlin algebras [65, Theorem 5.6],
Coulomb branches [91] and rational Galois orders. Rational Galois orders are
attached to an arbitrary finite reflection group and a set of difference operators with
rational function coefficients. The parabolic subalgebras of finite W-algebras of type
A are examples of rational Galois orders [65, Theorem 1.2].

New examples of Galois orders can be obtained by considering the invariants of
generalized Weyl algebras under the linear actions of finite groups [58—60]. Let G,,
be the cyclic group of order m. Fix a primitive mth root of unity w. Then G,, acts on
the Weyl algebra A, as follows: 0 - wd; x — w™lx, where x and 9 are the standard
generators of A, [0,x] = 1. Denote by A? the subalgeb@r”g of invariants under this
action. Similarly, one defines the invariant subalgebra A,” of the nth Weyl algebra.
Form > 1,n > 1, p|mlet A(m, p, n) be the subgroup of GS” of all elements (h,, ..., h,)
such that (h,h, ... hn)’"/f’ = id. The groups G(m,p,n) = A(m,p,n) X S,, where the
symmetric group S, permutes the entries in A(m, p, n), are non-exceptional complex
reflection groups. Let A, be the alternating subgroup of S,. We have

Theorem 2.3 ( [59], Theorem 1) Let W € {G;f”, G(m,1,n),A,,m>1,n>1}. Then
AV is a principal Galois order over T = klty, ..., 1,1V, where t; = 0x;,i = i, ... ,n.

Analogs of Theorem 2.3 also hold for invariants of differential operators on the torus
[59, Theorem 3].

It was shown in [53] that Galois orders have a nice theory of Harish-Chandra mod-
ules. Let U c (L % M) be a Galois ring over I and m a maximal ideal of I". Let m be
any lifting of m to the integral closure of I" in L. The cardinality |m| of the stabilizer of
m in M depends only on m.

Theorem 2.4 ( [53], Theorem A, , Theorem 8) Let T be a finitely generated commu-
tative domain, U C (L + M)® a right Galois order over T, m € SpecmT with finite
|m|.

(1) The fiber ®(m) is non-empty. Moreover, If U is a Galois order over T, then
the fiber ®(m) is finite.

(i) Let U be a Galois order over I, where I is a normal noetherian k-algebra, and
M € H(U,T) is simple U-module. Then all subspaces M(n) and the number of
isomorphism classes of simple modules N, such that N(m) # 0, are bounded.
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2.3 Gelfand-Tsetlin g{,-modules

In this subsection we assume k = C and consider Gelfand-Tsetlin representations
for the Lie algebra gl, consisting of all n X n complex matrices with the standard
basis of elementary matrices €s 1 <i,j < n. For each k < n denote by gl, the Lie
subalgebra of gl, spanned by {e; |i,j =1,...,k}. We have the following embed-
dings of Lie subalgebras

gl, cgl,c...Cgl,

We have corresponding embeddings U; Cc U, C ... C U, of the universal enveloping
algebras U, = U(gl,),1 <k <n.SetU =U,,.

Let Z, be the center of U,. This is the polynomial algebra generated by the fol-
lowing elements:

Cks = € i,Chiy -+ Ciips 2)
(igse i) E{1,.. K}
s=1,...,k.
Let I' be the Gelfand-Tsetlin subalgebra of U(gl,) generated by the centers Z,,
k=1,...,n. The generators ¢, k=1,...,n, s=1,...,k are algebraically inde-

pendent [93].
Let A be the polynomial algebra in the variables {4,
the embedding = : '— A such that

Cps Z(/lk,+k— 1)SH< ,1,(41/1%)'
i G

J#

i |1 <j<i<n}. Consider

One can easily check that 7(c,,) is a symmetric polynomial in A of degree s in vari-

ables Ay, ..., Ay. Let G = []}_, S; be the product of symmetric groups. Then G acts

naturally on A where S, permutes the variables 4,,, ..., Ay, k =1, ...,n. The image
of I', z(I'), coincides with the subalgebra of G-invariant polynomials in A which we
identify with I'.

Consider the Harish-Chandra category H(U,T"). The modules of H(U,I') are
called Gelfand-Tsetlin modules. If M € H(U,T') then

M= @ M(m),

me Specm I”

where M(m) = {v € M|m*v = 0 for some k > 0}.

For a Gelfand-Tsetlin module M(m) € H(U,I') and m € SpecmI" we call the
dimension of M(m) the Gelfand-Tsetlin multiplicity of m.

A classical result of Gelfand and Tsetlin [63] provides an explicit basis for
all simple finite-dimensional gI -modules. This basis is given by special Gelfand-
Tsetlin tableaux) Identify C™> with T (C)=C"xC" I'x ... x C and write every
vector v € C™ 2 in the following form:
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V= Wt oo Vi Ve 1,15 w00 Ve 1=t |20 V215 Vaa [vy1)

Then we define the following Gelfand-Tsetlin tableau T(v):

Unl Un2 ttt Un,n—1 Unn

Un—1,1 Tt VUn—1,n—1

V21 V22

V11

Forv = (v))_, € T,(C) consider the complex vector space V(T(v)) spanned by the
set

v+T, (Z)y={v+w|w= (w[j ;'15;=1’Wij €Zwy=0,k=1,...,n}.
A Gelfand-Tsetlin  tableau T(v) is standard if v,;—-v_,; €7Z,, and
Vieri = Viir1 € Zspforalll <i<k<n-1

If L(A) is the simple finite-dimensional gl -module of highest weight
A=(4y,...,4,), then the set of all standard tableaux 7(v) with fixed top row
V=4 —i+1i=1,...,ngives a Gelfand-Tsetlin basis of L(4). Moreover, one can
explicitly write the action of of the generators of gl(n) on these basis tableaux [63].

To every tableau 7(v) we associate the maximal ideal m, of I" generated by
¢; — v;(v), where

c 1
Yok = Y +m =] <1 - —>
i=1 i Vimi = Vij
n(n—1)

Let M =2Z > be the free abelian group generated by 67, 1 <j<i<n—1,
where (6Y); =1 and all other (8%),, are zero, 1<j<i<n—1 and let
G=S5,%x8,_; X xS§,. Identify M with T,_,(Z) and consider its action on 7,(C)
by translations: 67 - v = 67 + v. Also, consider the action of G on T,(C), where S
acts on the kth row:

O'(Vk] yaees ka) = (Vk,z)'"(l)’ ey kao'_l(k))‘

Let L be the field of fractions of A and K the field of fractions of I'. Then K = LY
and G is the Galois group of the field extension K C L. The following map
7 : U — (L x M)% is a homomorphism of algebras, where
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m m

. o
T(Cpm) = Cp * € T(Cppp)) = D @™, T(Cpyr,) = Y,y (8™)7),

i=1 i=1
_Hj(/lmil,j - )’mi)
= = F—

' Hj#i(/lmj - Ami) ’

and e is the unit of M.

This embedding defines on U the structure of a Galois order over I" [52, Proposi-
tion 7.2].

Homomorphism 7z can also be used to construct infinite-dimensional Gelfand-
Tsetlin modules which have a basis parametrized by Gelfand-Tsetlin tableaux and
with the action of I" determined by the entries of tableaux as in (2.3). Such Gelfand-
Tsetlin modules are called fableau modules.

If the action of the generators of gl in a tableau Gelfand-Tsetlin module is given
by the classical Gelfand-Tsetlin formulas as in finite-dimensional modules then such
module is called standard tableau module. Families of standard tableau modules
were studied in [28, 37, 56, 62, 77, 78].

In particular, if v is generic, that is v, —v,, € Z for any r < n and all possible
s # t, then V(T(v)) is generic standard tableau module [37]. All simple generic Gel-
fand-Tsetlin modules were described in [37].

If v contains a pair (vy; , vy; ) such that k > Tand vy; —vy; € Z, then v (and 7(v))

a

I H

is singular. Finite-dimensional gl -modules are examples of tableau Gelfand-Tsetlin
modules with singular tableaux. Families of infinite-dimensional tableau Gelfand-
Tsetlin modules with singular tableaux were considered in [38, 40, 56, 62, 77, 78].
In particular, the problem of constructing singular standard tableau Gelfand-Tsetlin
modules was solved in [56, Theorem II] for any tableau T(w) satisfying special FRZ-
condition. This includes all known examples of standard tableau modules. For any
such tableau 7(w) there exists a unique simple standard tableau Gelfand-Tsetlin g[,
-module V,, such that V, (m,,) # 0 and all Gelfand-Tsetlin multiplicities of maximal
ideals of I in the support of V,, equal 1. A combinatorial approach developed in [56]
allows to explicitly construct a large class of simple tableau modules with singular
tableaux. Moreover, it was shown for n < 4 (and conjectured for all n) that modules
constructed in [56] exhaust all simple standard tableau Gelfand-Tsetlin modules.

A systematic study of singular modules was initiated in [37]. We say that v is sin-
gular of index m > 2 if:

(i) there exists arow k,1 < k < n, and m entries Vi, -+ Vi
Vi — V. € Zforall j,s € {1,...,m};

i
(i1)) m is maximal with the property (i).

on this row such that

A tableau Gelfand-Tsetlin module structure on V(T(v)) for singular v of index m = 1
was established in [ [37], Theorem 4.11]. In this case the module V(7(v)) is not
standard tableau module, its basis contains derivative tableaux and the Gelfand-Tset-
lin multiplicities are bounded by 2 (see also [88] and [92]). The structure of V(T(v))
was described in [64]. The case of arbitrary singularity of index m = 2 was studied
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in [39], where any number of singular pairs (but not singular triples) and multiple
singular pairs in the same row were allowed. The case of an arbitrary singularity was
solved in [89] (p-singularity) and [83] (arbitrary singularity). Finally, an alternative
geometric approach developed in [90] led to the classification of simple Gelfand-
Tsetlin modules. It showed a deep connection between the Gelfand-Tsetlin theory
and Coulomb branches.

Remark 2.1

e Singular tableau Gelfand-Tsetlin modules have beautiful connections with Schu-
bert calculus and Postnikov polynomials [41] and with tensor product categorifi-
cation and KLRW algebras [75];

e It is still a conjecture that any simple Gelfand-Tsetlin module V with V(m,) # 0
is isomorphic to a subquotient of V(7(v)) for any singular v. It is known to be true
for n =2 and n = 3, and in the 1-singular case. In particular, there is a complete
explicit classification of all simple Gelfand-Tsetlin gl;-modules [36].

n(penote GT the category of all Gelfand-Tsetlin gl;-modules, and for each orbit { in

C™ 2" of the action of 7,,_;(Z)#G denote by GT, the full subcategory of GT consist-
ing of modules with support in {. Then

GT = &P GT,.

n(n+1)
{eC™ 2 /(T,_,(2H#G)

Given v € c*s e " define the graph Q(v) whose vertices are pairs of indices
{(k,i) | 1 £i <k <n}, and there is an edge between (k,&m?) and (/, j) if and only if
Vi — Vi, € Z and [k —1| < 1. We will say that ve C™ 2" is in normal form if
whenever v, — v, € Z for some a5 Sb<k<n, then v, —v,; €Z;, for all
a<i<j<b. Wewillsay that ve C 2 is a seed if v is in a normal form and for
(k, i) and (I, j) from the same connected component of Q(v) the following holds: if
k,l <n then v; =v;;, while if [ = n then v ; <Vv, Wi, To explain these concepts we
consider an example below of an element v € C 2, a normal form of v, a seed
and the corresponding graph. It is assumed that the set {l,a,b,c,...} C Cis linearly
independent over Z.
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1 a+1 a b 0 1 0 a+1 a b
a b—1 b a+1 a+1 a b b—1
c c+1 c c+1 c c
a a-—1 a a—1
a+1 a+1
An element v € c™5 A normal form in G v
CL+1 a 1 0 b — o
a a b—1b—1 & .ﬁ‘
c c c — o«
a—la-—1
a—1 ;
A seed in (T, 1(Z)#G) - v The graph
Fix aseed v and set { = ¢; € Cnmz“) /(T,_(Z)#G). Let G; < G be the stabilizer

of v. For z € T,_,(Z) such that v+ z is in normal form set (G;), < G; to be the
stabilizer of z. If M € GT, then

M= 6BzeT,,_,(Z)M (mg,,)

The following FO inequality was established in [53, Theorem 4.12(c)]. It gives an
upper bound for the Gelfand-Tsetlin multiplicities of any simple Gelfand-Tsetlin
module:

G5l
I(Gp). |

dimM@m., ) <

T4z 3)
It was conjectured in [53, Remark 5.4] that this inequality is sharp. This was shown
to be true in [41, Theorems 8.3, 8.5] and in [29, Theorems 10,11].

We call the essential support of M the set of all z for which the equality holds
in (3). In fact, (3) gives a sharp bound in each subcategory GT,:

Theorem 2.5 (Strong Futorny-Ovsienko Conjecture) [42] Let v be a seed, { = ;.
Then

(1) The module V(T(v)) has a simple socle V;

(i1) The essential support of V. is nonempty. It consists of integral points of a
finite union of polyhedral rational cones, at least one of which is of maximal
possible rank M;

(i) The maximal Gelfand-Tsetlin multiplicity of a character in GT, is |G|, and
this is attained at the socle V

soc?
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(iv) For any v + z in the essential support of V., the module V. is the unique
simple Gelfand-Tsetlin module having v + z in its support.

2.4 Representations of IW/-algebras

Finite W-algebras are certain family of algebras that are associated with nilpo-
tent orbits in semisimple Lie algebras. These algebras are closely connected
with Yangian theory and with affine W-algebras and attract a growing interest in
their representation theory. Let = = (p;,...,p,,) be a sequence of integers such
that 1 <p, <...<p, and p, + ... +p,, =n. Then = defines a finite W-algebra
U = W(x) of type A. Set 7, = (p,....py), k=1,...,m and consider the corre-
sponding finite W-algebras W(x;). Then

W(z) C ... c W(x,) = W(x).

LetI" be a subalgebra of W(x) generated by the centers of all W(x,), k=1, ..., m.
The center Z of W(x) is polynomial algebra in e = p; + ... 4+ p,, variables, while
I' is a polynomial algebra in d =mp, +(m—1)p, +...+2p,,_, +p,, Vvariables
which is usually called the Gelfand-Tsetlin subalgebra of W(x). If m =e and
p;=...=p, =1 then W(r) is isomorphic to the universal enveloping algebra
U(gl,).

Theorem 2.6 [49, Theorem 3.6] W(x) is a Galois order overT.

Theorem 2.6 implies that W(x) has a nice theory of Harish-Chandra modules in
H(W(x),T’) (see also [48]). Moreover, it allows to prove the Gelfand-Kirillov conjec-
ture for W(x) [49, Theorem I]. An important ingredient of the proof is the Noncom-
mutative Noether’s problem on the invariants in the skew fields of the Weyl algebras
with respect to linear group actions. We have the following remarkable fact

Theorem 2.7 [60] For any field k of zero characteristic and any linear action of a
finite group G, if the quotient variety A"(k)/G is rational then the Noncommutative
Noether’s problem holds.

A large family of new simple modules for an arbitrary finite W-algebra of type
A was explicitly constructed in [57]. A basis of these relation modules is given by
the Gelfand-Tsetlin tableaux whose entries satisfy certain sets of relations. Also, the
simplicity of tensor product of any number of highest weight modules with generic
highest weight was established.

2.5 Generalized Gelfand-Tsetlin theories
Let I' be a commutative noetherian Harish-Chandra subalgebra of an associative

algebra U and assume U to be finitely generated over I'. Then I" has the maximal tor-
sion (that is all generators of I have torsion) on Harish-Chandra modules in H(U, I).
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Thus H(U, T') serves as a starting point in the stratification of the whole module cat-
egory U — Mod by prime ideals of I" [54, 55]. The subcategories of this stratifica-
tion are the generalized Harish-Chandra categories consisting of U-modules with
smaller torsion.

Recall that a forsion theory over I' is a pair (7, F) of full subcategories of
I' — mod such that:

(1) 7 consists of all I'-modules T such that Hom (7, F) = 0, for all F € F,
(2) F consists of all I'-modules F for which Hom (T, F) =0, forallT € T

Define a transfinite ascending chain of subsets (Z,); o;4ina DY setting Z, = SpecmI”
and Z; = Uj<i Z,, in case i is a limit ordinal, and Z; = Z,_; U Max (SpecI"\ Z_;) in
case i is nonlimit. Here Max A denotes the set of maximal elements of A. Then for
eachp € SpecT there is a minimal ordinal i, such that p € Zi,,- The nonlimit ordinal
iy is the coheight chi(p) of p.

We have a transfinite ascending chain of torsion classes 7, C 7, C ... C 7, C ...
such that I' = Mod = | J;.; 7; for some ordinal 6. If M is a I'-module then for
uniquely determined ordinal i we have M € 7; and M ¢ 7, for all j < i.

For a torsion class 7 in I' — Mod and for a U-module M denote the torsion I"
-submodule of M in T by T(M). If T(M) is a U-submodule of M for every U-module
M then we say that a torsion theory (7, F) in I' — Mod is liftable to U — Mod.

The following result shows that the module category U — Mod has a stratification
with respect to the coheight of prime ideals.

Theorem 2.8 [55, Theorem A] Let i > 0 be an integer. The torsion theory associ-
ated to the subset Z; C Specl of prime ideals of coheight < i is liftable to U. For
any simple U-module M all associated prime ideals of M in SpecT” have the same
coheight.

3 Representations of infinite-dimensional Lie algebras
3.1 Affine Lie algebras

In 1967 V.Kac and R.Moody extended the generators and relations construction
of finite-dimensional simple Lie algebras to a new important class of infinite-
dimensional Lie algebras, now appropriately called Kac-Moody algebras, by
relaxing the condition on the Cartan matrix to be positive definite [68]. Repre-
sentation theory of these algebras is a rich source of interesting research with
numerous applications. Specially important is the family of affine Kac-Moody
algebras which correspond to the case of positive semidefinite generalized Cartan
matrix. Their representations are relevant to theory of theta functions, modular
forms, vertex algebras, the Boson-Fermion correspondence and soliton equations,

@ Springer



Sao Paulo Journal of Mathematical Sciences (2022) 16:131-156 145

to name just a few. Description of simple modules for affine Kac-Moody algebras
is a very challenging problem of prime importance.

Let ® be an affine Kac-Moody algebra with a 1-dimensional center Z = Cc and
a fixed Cartan subalgebra $.

Classification of simple ®-modules is known in various subcategories of
weight modules, i.e. those on which the subalgebra $ acts diagonally [19, 33-35,
66, 4, 61] but remains open in general. A key ingredient in the construction of
simple module for affine Lie algebras is a parabolic induction. The long standing
conjecture [34], Conjecture 8.1 states that parabolic induction reduces the classi-
fication of simple modules to the classification of so-called dense modules (with
maximal possible support). This conjecture was proved for A(ll) [33], for AP,
[18] and for all affine Lie algebras in the case of modules with finite-dimensional
weight spaces and non-zero action of ¢ [61].

Parabolic subalgebras of affine Lie algebras are of two types: those with a
finite-dimensional Levi subalgebra and those with an infinite-dimensional one.
Let B C ® be a parabolic subalgebra such that B =1 & n is a Levi decomposi-
tion with an infinite-dimensional Levi factor I. Then [ contains the Heisenberg
subalgebra G of & generated by all imaginary root subspaces of . Let [° be the
Lie subalgebra of I generated by all real root subspaces and $, G(I) a subalgebra
of I generated by its imaginary root subspaces. Then [ = [° + G, where G, C G
is the orthogonal complement of G(I) in G with respect to the Killing form, that
is G = G(l) + Gy, [G;,1°] = 0 and I° n G; = Cc. For any positive integer k, denote
©, the Lie subalgebra of & generated by the root subspaces &, 5. We say that a &,
-module V is &, -surjective (respectively ®_, -surjective) if for any two elements
vi,v, € V there exist v € V and u,u, € U(®,;) (respectively, u;,u, € U(G_;5))
such that v, = u;v, i = 1,2. A Gi-module T is admissible if for any positive integer
k, any its cyclic ®,-submodule 7" C T is ®;-surjective or ®_, ;-surjective.

A simple weight [-module is called fensor if it is isomorphic to a tensor prod-
uct of a simple weight [°-module S with a Z-graded simple G,-module T with the
same scalar action of c. A tensor module S ® T is called admissible if 7 is admis-
sible G-module.

If N is a weight [-module then consider the induced module

indy(P, ®) = U(®) @y, N,

where nN = 0. The following result allows to construct explicitly a large family of
simple &-modules from simple [-modules. Particular cases of this theorem were
proved in [4, 43].

Theorem 3.1 [44, Theorem 1] Let P =1 @ n C ® be a parabolic subalgebra of ®
with infinite-dimensional Levi factor L. Then indy('B, ®) is a simple &-module for

any simple admissible tensor I-module N with a non-zero scalar action of c.

Fock space realizations of affine Kac—Moody algebras were introduced in [90]
for affine s/, and were generalized in [31] for all untwisted affine Lie algebra.
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These remarkable boson realizations, called Wakimoto modules, plays an impor-
tant role in the conformal field theory for the Wess-Zumino-Witten models.

Different free field realizations of affine Lie algebras were constructed in [7,
20, 24, 70, 79, 80], yielding in particular explicit constructions of imaginary
Verma modules and intermediate Wakimoto modules for affine s/,. A uniform
construction for an arbitrary untwisted affine Kac—Moody algebra which includes
all cases above, was given in [47, Theorem 3.3]. It was motivated by geometric
representation theory for generalized flag manifolds of finite-dimensional semi-
simple Lie groups.

Let g be a finite-dimensional simple Lie algebra, ¥ an invariant symmetric bilin-
ear form on g, p = I @ u a parabolic subalgebra of g with the Levi factor [, it is the
opposite radical of 1. Consider the affine Kac-Moody algebra g, = g(#) @ Cc with
the commutation relations

[a®f(®),bQ g(n)] =

= [a,b] ® f(1)g(1) — k(a, b)Res,_(f (D)dg(D))c.
Consider the natural parabolic subalgebra p,,, of §
Prar = Luar @ W
where
L =1®c C() @ Cc

and the nilradical u,,, of p,,, and the opposite nilradical i, are given by

i, =1 Qc C(?) and i, = it Q¢ C(2).

nat

We have the triangular decomposition of g:
g=1,,®L,, ®u,,.

Leto : p,, — al(V) be a representation of p,,, such that o(c) = id,. Then the gen-
eralized imaginary Verma module of level k is the induced module

Mycp(V) =Tnd} V= U@) @y, V-

Consider the commutative C-algebra K = C(t)), &, = C(#) dt. For a finite-dimen-
sional complex vector space V we define (V) = V ®¢ K and Q- (V*) = V* Q¢ L.
A natural pairing between €,-(V*) and KC(V) allows us to identify the restricted dual
space of (V) with Q,-(V*). Set PolQ,-(V*) for the polynomials on Q- (V*).

The following theorem establishes an isomorphism between the geometric reali-
zation of the affine Lie algebra g and the corresponding generalized imaginary
Verma g-module

Theorem 3.2 [47, Theorem 3.15] Let (0, V) be a continuous p,,,-module. Then we
have an isomorphism of §-modules:
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M, . p(V) = PolQp(it") ®c V.
For a g-module FE set
My o(E) = U@) ®uacimece Es

where ¢ ® tC[[¢]]E = 0 and c acts on E as the identity. Then we get a functor MK’Q
from the category of g-modules to the category of relaxed highest weight g-mod-
ules. The module MK’Q(C) has a natural structure of a vertex algebra, called the uni-
versal affine vertex algebra associated with g, which we denote V*(g). The simple
affine vertex algebra V,(g) is the unique simple graded quotient of M, ,(C). There
is a one-to-one correspondence between simple positive energy representations of
V.(g) and simple admissible modules over the Zhu’s algebra A(V_(g)) of V_(g) [94],
where

A(V(9) = U(9)/1,

for some two-sided ideal /. of U(g). We also have A(V*(g)) = U(g). This corre-
spondence allows to construct new families of simple representations of these ver-
tex algebras. In particular, new families of simple modules were constructed for the
universal affine vertex algebra of 31, in [2]. This approach has also been exploited
in [50, 72, 73] and [45]. In particular, the localization technique and the Wakimoto
functors were used in [45] to construct relaxed Wakimoto modules for affine vertex
algebras. The twisting functor 7, on the category of g-modules is assigned to a posi-
tive root a of g and is defined as follows

T, (M) = (D,U@Q,)/U@@)) ®ygM,

for a g-module M, where D, U(g) is the localization of U(g) relative to the multiplca-
tive set {f¥ | k € Z 4} C U(@).
There exists a natural isomorphism

TlIOMK,g - MK,QO Tg

of functors, where T? is the twisting functor for g assigned to . In particular, for a
Verma g-module M(4) of g of highest weight 4 we have

T,(M, ((M(1))) =M, (W(4,a)),

where W(4, a) € H(U(g),T",), where I', is commutative subalgebra generated by the
Cartan subalgebra of g and by the Casimir element of root a. It was shown in [46]
that W(4, @) has finite I',-multiplicities Moreover, it has finite I'-multiplicities for
any commutative subalgebra I' of U(g) containing I',.

The Feigin-Frenkel homomorphism between the universal affine vertex alge-
bra and the tensor product of the Weyl vertex algebra with the Heisenberg ver-
tex algebra gives an explicit free field construction of Wakimoto modules. It was
used in [45] to obtain a free field realization of relaxed Verma modules.
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Letg=0®Hh®n, B={f,;a € A }aroot basis of #1, {x,; ¢ € A, } linear coor-
dinate functions on ft with respect to B, where A, is the set of positive roots for g.
Consider the Weyl algebra A; of ft generated by {x ;¢ € A} and the Weyl alge-
bra Ay is topologically generated by the set {x,,, J, ;@€ A , n € Z} with the
canonical commutation relations. The algebra Ay has a natural Z-grading with
Ao = As

For an Aﬁ—module N define the induced module

tl’X’

My (N) = A’C(ﬁ) ®Azc(ﬁ),o®c¢4m),+ N

where Ay, , acts trivially on N. Moreover, if E is an h-module then define relaxed
Wakimoto g, -module

WK,Q(N ®q: E) = MK(ﬁ)(N) ®C MK_K(_,f,(E)a

where k.. is the critical invariant symmetric bilinear form on g (cf. [45, Lemma 2.4]).
This defines the Wakimoto functor from the category of modules over A; ® U() to
the category of smooth g,-modules. We have the following properties of the Waki-
moto functor.

Theorem 3.3 [45, Theorem B] Leta € A, A € b*.

e There exists a natural isomorphism
T,oW, g =W, oT?
of functors, where T is the twisting functor for g assigned to a. In particular,
T, (W, (M(A)) = W, (W(4, a));
e If the Verma g,-module M, ,(M(4)) is simple, then
M, (WA, @) = W, (W(A, ).

Hence, we have a free field realization of simple relaxed Verma module

M, ((W(4, a));
o If(A+p,p¥) ¢ —Nforall f € A, then

M, (WA, @) =W, (W(A, a)).

Write k = kk, for k € C, where , is the normalized g-invariant symmetric bilinear
form on g satisfying

— \%
Ky = 2"k,

where k, is the Killing form and /" is the dual Coxeter number.
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The number k is admissible if the affine vertex algebra V, (g) is admissible as a
highest weight module over g in the sense of [69]. For example, if g = 81, then k
is admissible if and only if

k+n=1—7—1 withp,geN, (p,g9)=1,p>n+1.
q

A g-module M is called admissible of level k if k is an admissible number and M is
an A(V,(g))-module. Explicit construction in terms of Gelfand-Tsetlin tableaux of
all admissible simple highest weight 8[,, -modules and all admissible simple 81,
-modules induced from $[, in the minimal nilpotent orbit was obtained in [50].

3.2 Krichever-Novikov algebras and orthogonal polynomials

Let R is a commutative C-algebra and g be a simple complex Lie algebra. The uni-
versal central extension § of ¢ ® R is the Lie algebra (g ® R) & Q}e /dR, where
Q}e /dR is the space of Kihler differentials modulo exact forms and

K®fy®gl i= [y ®fg+ (x,y)fdg, [x®f o] =0

for x,y€gq, f,g€R, and w € Q;/dR [71]. Unlike in the affine case, the uni-
versal central extension of ¢ ® R need not to be one dimensional for a general R.
When R is the algebra of meromorphic functions on a Riemann surface and with
a fixed finite number of points where the poles are allowed then g ® R is a Krich-
ever-Novikov algebra [76]. In the genus 0 case we obtain the n-point algebras with
R =CI(t —xl)‘l, N (5 —xN)‘l]. The universal central extension of such algebras
was described by in [14]. In particular, the universal central extension of a 4-point
Lie algebra can be given explicitly in terms of Gegenbauer orthogonal polynomials
[15], while in the elliptic case with R = C[x,x™!,y|y* = 4x> — g,x — g;], the uni-
versal central extension is described in terms of Pollaczek polynomials [16].

The ring R =C[t,t " ul|lu®> =t* —=2c> + 1], c € C\ {1} corresponds to the
DJKM algebra which was introduced in [27] in the study of the solutions of the Lan-
dau-Lifshitz equation which describes time evolution of magnetism in solids. The
universal central extension of the DIKM algebra was described explicitly in [23] in
terms of certain polynomials P,(c) in ¢ which satisfy the recursion relation

(6 + 2K)P,(c) = 4keP,_y(c) — 2(k — 3)P,_4(c)

for k > 0. Depending of the initial conditions we obtain four families of polynomi-
als, two of which are Gegenbauer polynomials and the other two are given by elliptic
integrals. Assume for example that P_;(c) = P_,(c) = P_;(c) =0 and P_,(c) = 1.
Then the generating function is defined via an elliptic integral:

2 _
P_,(c,2) = ZP_4,k_4(C)Zk =zV1—-2c% + Z4/ Z 4cz L

dz.
po 2(z4 = 2c22 + 1)3/2
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The second elliptic case corresponds to the following initial conditions:
P_;(c) =P_3(c) =P_,(c) =0and P_,(c) = 1. It turned out that both families of pol-
ynomials satisfy the fourth order differential equation:

Theorem 3.4 [26]

e The polynomials P, = P_, , satisfy the following differential equation:

16(c* — 1*P™ +160c(c* — P! — 8(c*(n* — 4n — 46) — n* + 4n + 22)P!!
—24c(n* — 4n — 6)P! + (n — 4’n*P, = 0.

e The polynomials O, = P_, , satisfy the following differential equation
16(c* — 1)*0™ +160c(c* — Q" — 8(c*(n* — 4n — 42) — n* + 4n + 18)Q"

—24c(n* —4n —2)Q) + (n — 6)(n — 2)*(n + 2)Q, = 0.

Polynomials P_,, is a special case of associated ultraspherical polynomials,
which implies their orthogonality with respect to a certain weight function. On the
other hand polynomials P_, , are not associated ultraspherical polynomials. Never-
theless, their orthogonality with some weight function can be shown by using the
Favard’s theorem (see [26] for details). Hence we obtain

Theorem 3.5 Polynomials P_,, and P_, , are non-classical orthogonal polynomials.

In particular, polynomials P_, , is a new family of orthogonal polynomials. It is
natural to expect that the universal central extensions of other Krichever-Novikov
algebras might lead to more families of non-classical orthogonal polynomials. In the
superelliptic case when R = C[t, ™!, u|lu™ = p(t)], p(t) € C[t] the central extension
was described recently in [85].

Generalizing Wakimoto’s construction the free field type realizations of the ellip-
tic Lie algebra and of the DJKM algebra were constructed in [17] and [25] respec-
tively for g = sl,. Free field realization 3-point and 4-point algebras were constructed
in [22] and [21] respectively.

4 Vector fields on algebraic varieties

Lie algebras of vector fields on affine varieties are objects of fundamental impor-
tance. Nevertheless, their general theory, in particular their representation theory, at
large is still undeveloped.

Let X ¢ A" be an irreducible affine algebraic variety over an algebraically closed
field k of characteristic zero, and let Iy, = (g, ..., g,,) be the ideal of all functions
that vanish on X. Let Ay :=k[x,,...,x,]/Iy be the algebra of polynomial functions
on X. Denote by Vy := Der; (Ay) the Lie algebra of polynomial vector fields on X,
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which is the Lie algebra of derivations of A = Ay. The Lie algebra Vy is simple if
and only if X is a smooth variety [67, 87] (see also [10]). A classical example is the
first Witt algebra which is the Lie algebra of polynomial vector fields on a circle.
Its universal central extension is the famous Virasoro algebra which plays a crucial
role in quantum field theory. Its generalization is the Lie algebra of vector fields on
a torus

n
W, = Der(k[x:', ... x¥']) = ® Ad,,
p=

where A = k[x', ... x*!]and d, = tlf, e d,
1

of W,. Setting " = £ ..., for r = (ry, ..., 1,) € Z", the Lie bracket in W, is defined
as follows:

= tn% span a Cartan subalgebra H

["d;, fdj] = sitr”dj - rit’“di, ihj=1,...,mr,s € 2"

Simple Harish-Chandra modules for the first Witt algebra W, were classified in [81].
Numerous attempt were made to extend this classification to Lie algebras of poly-
nomial vector fields on n-dimensional torus. This was finally achieved in [8] where
all simple modules in H(U(W,), U(H)) with finite multiplicities were classified
using the new concept of AW, -modules which are W,-modules and at the same time
A-modules with some compatibility condition:

x(fv) = (xfw+fxv), feAxeW,veM.

The theory of AW, -modules is a generalization of a D-module theory. We recall the
definition of important class of tensor modules. Fix a finite-dimensional g[,-module
U and y € C". Define the module of fensor fields

T(U,y)=¢Clgt',....¢'1® U

n

with the action

'di(g" @ u) = ug""" @ u + Z rg"t" @ Eu,
k=1
wherere Z",uey+ 27" i=1,...,n
In particular, the modules of differential forms are tensor fields modules:
g’ QX(T™) = T(A*C", y). They form the de Rham complex

0 d | d d
g (M) — g Q' (T — ... —g"Q"(T").

If module of tensor fields is not isomorphic to one of the members of this de Rham
complex then it is simple [30].

Another class of W, -modules consists of highest weight type modules. Choose
a Z-grading on W, by degree in f,. Then a zero component W’? is a semidirect
product of W, _; with an abelian ideal. We take a W,_;-module of tensor fields for
W,_, and define the action of the abelian ideal by multiplication rescaled with a
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complex parameter f, yielding a Wr?-module T(U,y,p). Setting WrT(U,y,p) =0
we construct the induced W,-module M(U,y, ) which has a unique simple quo-
tient L(U,y,p) with finite weight multiplicities. For g € gl define a twisting
L(U,y, p)%, which corresponds to a change in the Z-grading on W,. Vertex opera-
tor realizations of simple W, -modules of the highest weight type were given in
[9].

The classification of simples Harish-Chandra W,-modules is as follows:

Theorem 4.1 [8, Theorem 1.1] Every simple module in H(U(W,), U(H)) with finite
multiplicities is isomorphic to either T(U,y), where U is different from A*C",
k=0,....n, or L(U,y,p)8, or a submodule dQ*(f) c Q' (B) for 0 <k < n and
pecC

Representations of Vy for X = A] were studied by Rudakov [84] and for
X = $?in [12]. A systematic study of representations of the Lie algebras Vy for
arbitrary smooth affine varieties X was initiated in [11]. Developing ideas of [12]
and [8] two families of simple Vy-modules were constructed: Rudakov modules
and gauge modules.

Let peX, U a finite-dimensional simple gly-module, where N is the
dimension of X. Then U is a module over the smash product A#U(gl,), where
f-u:=f(ufor f € Aandu € U. The Rudakov module is an induced module

R,(U) :=A#UVx) ®asu(q,) Us

this generalizes highest weight type modules for W,,.

Gauge modules are generalizations of tensor modules determined by the gauge
fields (see [11] for details) B; : A(h) QU - A(h) ®U,i=1,...,N, where A(h) is
the localization of A by a minor % of the Jacobian matrix of Iy of maximal rank,
and U is a finite-dimensional gl-module. Then A, ® U is a Der(A))-module
with the action

0 ag 1 o 0
9. — %8 @utfo® Bu+ L2 oo+ ),
<faz,.> (6@ u) fazi®” Js ® Biu ; k! azk®p o, !
kez¥\{0}

where f,g € Ay andu € U.
An AVy-module M is a gauge module if it is isomorphic to an AVy-submodule

of A(h) ® U of finite rank over A for any minor z of maximal rank.

Theorem 4.2 [f X is smooth then R,(U) and gauge modules are simple AVy-module
[11]. Moreover, If U is not an exterior power of the dual to natural module (resp.
natural module), then R,(U) (resp. a gauge module) is simple as a Vy-module [13].
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